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ABSTRACT

Protocol reverse engineering (PRE) is critical for network security
but faces scalability challenges when analyzing diverse proprietary
protocols. Traditional approaches require protocol-specific expertise
and cannot leverage knowledge across protocols. This paper presents
CrossPRE, a Transformer-based universal transfer learning frame-
work that automatically learns protocol-agnostic representations for
cross-domain protocol field boundary identification. Through ex-
tensive evaluation on nine widely-used protocols spanning industrial
control and network domains, CrossPRE demonstrates substantial
performance improvements over state-of-the-art methods including
FieldHunter, Netplier, BinaryInferno, and Netzob. Our framework
demonstrates remarkable knowledge transfer effectiveness, achiev-
ing substantial performance gains in challenging cross-protocol sce-
narios. Multi-source transfer learning further enhances adaptation,
particularly for industrial protocols where structural similarities en-
able robust knowledge sharing. Cross-domain experiments confirm
effective bidirectional transfer between protocol families, establish-
ing a new paradigm for scalable protocol reverse engineering that
reduces manual analysis effort while maintaining high accuracy.

Index Terms— Protocol Reverse Engineering, Message Format
Extraction, Field Semantic Inference, Transfer Learning

1. INTRODUCTION

With the proliferation of industrial control systems, IoT devices, and
proprietary network protocols, protocol reverse engineering (PRE)
has become a critical task in network security, essential for vulner-
ability discovery, security assessment, and network forensics [1, 2].
Traditional protocol reverse engineering methods have evolved from
manual analysis to semi-automated approaches, with early work
by Caballero et al. [3] introducing Polyglot for automatic protocol
message format extraction. However, these methods face significant
scalability challenges when dealing with diverse communication
standards [4].

The field has seen progressive advancement through algorithmic
approaches. Netzob [5] employs sequence alignment and contex-
tual analysis for protocol inference, while ProWord [6] introduces a
probabilistic approach using word extraction techniques. More re-
cently, FieldHunter [7] combines unsupervised learning with field
semantics extraction, achieving improved accuracy on binary proto-
cols. Despite these advances, traditional methods remain limited by
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their reliance on protocol-specific heuristics and inability to leverage
cross-protocol commonalities.

Deep learning has emerged as a promising paradigm for proto-
col reverse engineering, with several recent frameworks demonstrat-
ing significant improvements. Netplier [8] employs recurrent neu-
ral networks for message type identification, while BinaryInferno
[9] uses convolutional neural networks for binary protocol parsing.
PREUNN [10] introduces unsupervised neural networks for format
extraction, and more recent work by Zhao et al. [11] explores gener-
ative models for protocol grammar inference. However, these meth-
ods typically optimize for individual protocols, lacking systematic
knowledge transfer capabilities [12, 13, 14].

Recent work explores protocol evolution patterns. SynRe [15]
demonstrates combining natural language knowledge with syntac-
tic patterns for semantic inference. MDIPlier [16] explores multi-
dimensional protocol analysis, while frameworks like BinPRE [17]
and DynPRE [18] target binary format extraction and dynamic mes-
sage type inference. These approaches highlight knowledge reuse
potential but lack unified architectures for systematic cross-protocol
transfer. Transfer learning has achieved success in adjacent security
domains [19, 20, 21, 22], yet systematic application to protocol re-
verse engineering remains unexplored. The evolutionary character-
istics of protocols provide unique opportunities, as protocols share
fundamental design principles that can be exploited through appro-
priate learning architectures [15].

Current methods require substantial manual effort for each pro-
tocol, with performance heavily dependent on protocol-specific op-
timizations. This significantly limits scalability in heterogeneous
network environments where dozens of proprietary protocols may
coexist.

We propose CrossPRE, combining transfer learning with proto-
col reverse engineering to extract protocol-agnostic features while
maximizing cross-protocol knowledge sharing. The framework cap-
tures structural commonalities between protocol families through
a unified Transformer architecture, supporting effective knowledge
transfer from source to target protocols.

Our contributions are three-fold:

• We introduce CrossPRE, a novel cross-protocol transfer
learning framework that leverages protocol-agnostic seman-
tic representations to enable effective knowledge transfer
across diverse communication domains, including industrial
control protocols and network protocols. CrossPRE automat-
ically extracts transferable features while maintaining high
accuracy and minimizing manual involvement.

• We design a unified multi-task architecture combining a
Transformer-based protocol-agnostic encoder with special-
ized task heads for boundary detection, semantic type clas-
sification, and semantic function inference. The framework
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Fig. 1: CrossPRE overview.

supports flexible transfer strategies including single-source,
multi-source, and cross-domain adaptation, enabling efficient
knowledge sharing across protocol families.

• We evaluate CrossPRE’s effectiveness and robustness across
30+ transfer scenarios on multiple datasets. CrossPRE
achieved F1-score improvements ranging from 7.1% to
48.9% over baseline methods, demonstrating superior perfor-
mance with a strong balance of accuracy and computational
efficiency.

2. METHOD

To address the challenges of protocol parsing across heterogeneous
communication protocols and enable effective knowledge transfer
between different protocol domains, we propose a unified cross-
protocol transfer learning framework that leverages shared semantic
patterns while maintaining protocol-specific adaptations.

6e 25 d3 f7 … ... … … f7DNP3 Protocol Message: 05 64 0a 44 01 00 0a 00

[0-1] [2] [3]  [4-5]   [6-7]   [8-9] [10] [11]   [12-15]   [16]Position: 

Field Name:   Start   Length  Flags     Dest   Src   CRC CTRL  Func   Payload  CRC

Modbus Protocol Message: 01 03 00 0a 00 02 … 00

[0] [1]   [2-3]   [4-5] [6] [7]

Field Name:   Addr   Func Start_Addr  Count  Data   LRC

Position:

Position:

… … …S7comm Protocol Message: 32 01 00 00 08 00 00 01

[0] [1]   [2-3]  [4] [5-7]  [8-10]  [11]

Field Name:   PROT  TYPE      SEQ  ROSCTR    PARAM_LEN   Payload      ERROR  

00

Semantic Type:         CHECKSUMHRADER CONTROLLENGTH PAYLOADADDRESS FUNCTION

Fig. 2: Semantic alignment across DNP3, Modbus, and S7comm
protocols with unified type mapping.

2.1. Data Processing

The dataset comprises 9 widely-used protocols from public reposi-
tories [23]: SMB, SMB2, DNS, DNP3, S7comm, Modbus, TLS1.2,
DHCP, and FTP, spanning industrial control, network infrastructure,
and application domains. Each protocol message M

(p)
i undergoes

extraction and structural annotation at three hierarchical levels:
boundary positions Bi, semantic types Ti, and semantic functions
Fi.

We identify systematic constraints between semantic functions
and semantic types across protocols, as summarized in Table 1. For
instance, DATA LENGTH functions must be LENGTH type since
they represent numerical size values. The preprocessing pipeline
concludes with standardization, where messages are encoded as hex-
adecimal strings. Messages exceeding 256 bytes are truncated while
preserving protocol headers. The final dataset contains 5000 anno-
tated messages per protocol with 98.3% inter-annotator agreement
on boundary positions.

Table 1: Semantic Type-Function Constraints for Cross-Protocol
Field Mapping.

Semantic Function Constraint on Semantic Type

IDENTIFIER Should be HEADER or FLAGS
DATA LENGTH Should be LENGTH
ADDRESSING Should be ADDRESS
CONTROL CMD Should be COMMAND, CONTROL, or

FUNCTION
PAYLOAD Should be DATA or PAYLOAD
VALIDATION Should be CHECKSUM
PROTOCOL SPECIFIC Should be HEADER, VERSION, or FLAGS
SESSION MGMT Should be HEADER or CONTROL
CONFIGURATION Should be OPTION or DATA
APPLICATION DATA Should be DATA or PAYLOAD
SECURITY Should be DATA or HEADER

2.2. Cross-Protocol Semantic Alignment

The unified semantic labeling system addresses semantic hetero-
geneity in cross-protocol transfer learning. As illustrated in Figure
2, different protocols use disparate terminology for functionally
equivalent concepts—DNP3’s ”Function Code”, Modbus’s ”Func-
tion Code”, and S7comm’s ”ROSCTR Type” all represent operation
commands with protocol-specific encodings.

Our approach establishes two-tier semantic mapping: (1) Struc-
tural types capture syntactic roles invariant across protocols, such as
LENGTH fields containing numeric values; (2) Functional seman-
tics encode field purposes, enabling recognition that DNP3’s CRC
and Modbus’s LRC both serve VALIDATION functions despite
different algorithms. This dual representation allows the Protocol-
Agnostic Encoder to learn transferable features while Protocol-
Specific Heads adapt to syntactic variations. The constraints in
Table 1 enforce consistency and prevent semantic drift during train-
ing.

2.3. CrossPRE Architecture

The CrossPRE framework employs a hierarchical architecture de-
signed for cross-protocol knowledge transfer, as illustrated in Fig-
ure 1. The model consists of three core components: a protocol-
agnostic encoder that extracts universal features from raw byte se-
quences, protocol-specific Heads that adapt these features for indi-
vidual protocols, and a multi-task learning framework that jointly
optimizes parsing objectives.

The protocol-agnostic encoder processes input byte sequences
X = {x1, x2, ..., xn} where xi ∈ [0, 255] through byte embeddings
and positional encodings, followed by L = 6 transformer encoder
layers. Each transformer layer applies multi-head self-attention
with 8 heads and feed-forward networks with GELU activation,
enabling the model to capture long-range dependencies in pro-
tocol messages. The encoder outputs protocol-agnostic features
Fagnostic ∈ Rn×dmodel where dmodel = 512.

For each protocol p ∈ P , specialized task heads adapt the



shared representations through protocol-specific linear transforma-
tions. Each head performs three distinct parsing tasks: boundary
detection, semantic type classification, and semantic function pre-
diction. This multi-task design enables the model to simultaneously
learn syntactic boundaries and semantic meanings across heteroge-
neous protocols.

2.4. Theoretical Foundation and Transfer Strategy

Cross-Protocol Transfer. Let S and T denote source and target
protocol domains. The transferable knowledge K is learned through:

min
θ

LS(θ) + λ · d(PS , PT ) (1)

where d(·, ·) measures domain discrepancy. For multiple source pro-
tocols {Pi}ki=1 and target Pt, the generalization error is bounded by:

ϵt ≤ min
i∈[k]

ϵi + β

√
log k

nt
+

k∑
i=1

αi · d(Pi, Pt) (2)

Two-Stage Transfer Strategy. We employ progressive trans-
fer learning as illustrated in Figure 1. Stage 1 pre-trains on multi-
ple source protocols using multi-task learning with boundary detec-
tion, semantic type classification, semantic function prediction, and
protocol identification. The boundary detection loss uses weighted
cross-entropy with density regularization:

Rdensity = Ebatch

[
max(0, ρ̂− 2ρ)2

]
(3)

where ρ̂ is predicted boundary density and ρ is true density.
Stage 2 adapts to target protocol through: (1) Freeze encoder

parameters and train target head for 15 epochs; (2) End-to-end fine-
tuning with differential learning rates ηencoder = 0.1 · ηbase and
ηhead = ηbase where ηbase = 5× 10−5. We use AdamW optimizer
with cosine annealing and early stopping (patience=8).

3. EXPERIMENTS AND RESULTS

3.1. Experiment Settings

We evaluated CrossPRE using the dataset and architecture described
in Sections 2.1-2.3. Each protocol dataset contains the real-world
5000 messages from network traces, split into training (70%), vali-
dation (15%), and test sets (15%). Our experimental infrastructure
comprises dual Intel Xeon Gold 6248R CPUs with four NVIDIA
RTX A6000 GPUs. We compared against four baselines (Netzob,
Netplier, FieldHunter, and BinaryInferno) with all experiments re-
peated using 5 random seeds. Statistical significance was assessed
using paired t-tests with Bonferroni correction.

Table 2: Cross-Protocol transfer learning performance matrix (F1-
scores).

Target
Source SMB SMB2 DNS S7comm DNP3 Modbus FTP TLS1.2 DHCP

SMB – 0.3530 0.4190 0.3880 0.4510 0.4100 0.2940 0.3070 0.4290
SMB2 0.2250 – 0.2700 0.1740 0.3010 0.2870 0.1200 0.3240 0.3380
DNS 0.4220 0.5180 – 0.4810 0.4640 0.5920 0.5370 0.5540 0.5230
S7comm 0.4800 0.5510 0.6430 – 0.5540 0.5900 0.5360 0.5190 0.5800
DNP3 0.7970 0.7430 0.7470 0.7910 – 0.6990 0.6570 0.6670 0.7940
Modbus 0.6480 0.6610 0.6960 0.6300 0.6800 – 0.6930 0.6570 0.6550
FTP 0.5520 0.0000 0.5510 0.3890 0.5960 0.5590 – 0.6000 0.4980
TLS1.2 0.4350 0.3490 0.5160 0.4260 0.4590 0.5030 0.5110 – 0.5260
DHCP 0.4680 0.4520 0.4700 0.4970 0.4880 0.4880 0.4570 0.4240 –

Table 3: Transfer learning gains: Single-source and multi-source
protocol adaptation results.

Source Target Baseline Transfer Improvement Gain
Protocol(s) Protocol F1 F1 (%)

S7comm DNP3 0.5310 0.7910 +0.2600*** +48.9
S7comm Modbus 0.5760 0.6300 +0.0540*** +9.4
DNP3 S7comm 0.5020 0.5540 +0.0520*** +10.4
DNP3 Modbus 0.5460 0.6800 +0.1340*** +24.6
Modbus S7comm 0.4990 0.5900 +0.0910*** +18.2
Modbus DNP3 0.5280 0.6990 +0.1710*** +32.4
S7comm+DNP Modbus 0.5070 0.6900 +0.1830*** +36.1
S7comm+Modbus DNP3 0.5770 0.7400 +0.1630*** +28.3
DNP3+Modbus S7comm 0.5380 0.5760 +0.0380*** +7.1

Average – 0.5340 0.6610 +0.1270*** +23.9

Note: *** indicates p<0.001 using paired t-test with Bonferroni correction.
All results based on 5 independent runs with std<0.015.

3.2. Evaluation Metrics

We employ three metrics illustrated in Figure 3: Accuracy mea-
sures byte-level boundary classification correctness; F1-score eval-
uates boundary detection as binary classification despite severe
class imbalance; Perfection represents field-level exact match
rate—percentage of fields with perfectly identified boundaries.
Additionally, we compute weighted F1-scores for semantic type
and function classification, ensuring comprehensive assessment of
structural and semantic parsing capabilities.

Inferred Fields:  05 64 0a 44 01

True Fields:

1        2       3       4       5       6       7       8       9      10      11    12     13     14       15     16

00 0a 00 6e 25 d3 f7 82 00 00 b6 f7

05 64 0a 44 01 00 0a 00 6e 25 d3 f7 82 00 00 b6 f7

Boundary offset:

TP TP     TP TP    TN     FP    TN FP     TN    TP TN     TN    TN     TN     TN    TN

Perfect Perfect

Fig. 3: Evaluation metrics for field boundary detection: Accuracy,
F1-Score, and Perfection illustrated on DNP3.

3.3. Generalization Results

We evaluate CrossPRE’s generalization capabilities through exten-
sive transfer learning experiments across diverse protocol families.
Table 2 presents the complete transfer performance matrix, showing
F1-scores when models pre-trained on source protocols are applied
to different target protocols (Diagonal entries show ’–’ as they rep-
resent same-protocol scenarios). The results reveal clear patterns:
industrial control protocols achieve superior cross-protocol transfer
with average F1-scores exceeding 0.65, attributed to their shared
structural features including fixed-length headers, explicit length
fields, and CRC/checksum mechanisms. Notably, DNP3 as a tar-
get protocol consistently achieves high F1-scores across various
source protocols (0.6570-0.7970), with SMB as source yielding the
best performance (0.7970), suggesting that DNP3’s well-structured
frame format with clear field boundaries benefits significantly from
cross-protocol knowledge. Conversely, FTP and TLS1.2 show lim-
ited transfer due to text-encoding and encryption obscuring patterns.
These results confirm that protocol families share exploitable struc-
tural patterns, validating our semantic representation framework’s
effectiveness for knowledge transfer.

Table 3 quantifies the improvements gained through transfer
learning compared to training from scratch (baseline). The results
reveal substantial performance gains across all transfer scenarios,
with an average F1-score improvement of 0.1270 (23.8%). The
most remarkable improvements occur in industrial control protocol



Table 4: CrossPRE vs. State-of-the-Art: Comprehensive performance evaluation.

Protocol CrossPRE FieldHunter Netplier BinaryInferno Netzob

Acc. F1 Perf. Acc. F1 Perf. Acc. F1 Perf. Acc. F1 Perf. Acc. F1 Perf.

SMB 0.9863 0.8316 0.6717 0.8078 0.4455 0.1447 0.8552 0.4575 0.0765 0.7648 0.3409 0.1350 0.8253 0.2116 0.0000
SMB2 0.9247 0.4319 0.3350 0.8576 0.4005 0.0198 0.8839 0.3887 0.0743 0.8098 0.2842 0.0022 0.9020 0.2418 0.0000
DNS 0.9127 0.7933 0.4819 0.7866 0.6196 0.5441 0.8253 0.5523 0.3330 0.8382 0.6546 0.5956 0.7054 0.2500 0.0000
S7comm 0.8253 0.5460 0.2645 0.7844 0.6579 0.3213 0.8550 0.6920 0.3936 0.7845 0.6063 0.3085 0.6604 0.2373 0.0000
DNP3 0.9716 0.9617 0.9076 0.4052 0.4374 0.0830 0.4801 0.4714 0.0922 0.3683 0.3398 0.0369 0.4479 0.2470 0.0000
Modbus 0.8851 0.7724 0.5861 0.5551 0.5484 0.1536 0.4637 0.4247 0.1361 0.6901 0.7149 0.1809 0.3767 0.3976 0.5000
FTP 0.8517 0.4842 0.0772 0.7691 0.4626 0.0357 0.9564 0.6169 0.5802 0.7226 0.5505 0.0777 0.5540 0.5045 0.2694
TLS1.2 0.9808 0.7704 0.4288 0.7796 0.1732 0.0415 0.8390 0.1541 0.0000 0.9171 0.4299 0.1711 0.8771 0.3944 0.5000
DHCP 0.9172 0.6222 0.2320 0.9498 0.4503 0.1502 0.9530 0.3464 0.0082 0.8730 0.1737 0.0159 0.9690 0.2500 0.0000

Average 0.9186 0.7187 0.4631 0.7415 0.4617 0.1664 0.7901 0.4560 0.1880 0.7516 0.4549 0.1693 0.7020 0.3040 0.1410

transfers: S7comm to DNP3 achieves the highest absolute improve-
ment of +0.2600 (48.9%), while Modbus to DNP3 shows +0.1710
improvement (32.4% gain). Multi-source transfer learning fur-
ther enhances performance, as evidenced by S7comm+Modbus to
DNP3 achieving 0.7400 F1-score (+28.3%) and S7comm+DNP3 to
Modbus reaching 0.6900 (+36.1%). These multi-source configura-
tions leverage complementary knowledge from multiple protocols,
demonstrating the effectiveness of our unified semantic representa-
tion.
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Fig. 4: Plot of average accuracy, F1-score, and perfection on proto-
cols across different experiment pairs for each tool.

Table 4 and Figure 4 present comprehensive comparisons with
state-of-the-art methods. CrossPRE achieves the best average per-
formance with accuracy of 0.9186, F1-score of 0.7187, and perfec-
tion of 0.4631, significantly outperforming FieldHunter (0.1664),
Netplier (0.1880), BinaryInferno (0.1693), and Netzob (0.1410) in
perfection scores. As visualized in Figure 4, CrossPRE occupies the
optimal position in the upper-right corner with both high accuracy
and F1-score, while baseline methods cluster in lower-performance
regions. The substantial performance gap, particularly in indus-
trial protocols where DNP3 achieves 0.9617 F1-score and Modbus
reaches 0.7724, confirms that these protocols share exploitable struc-
tural patterns through our framework.

Cross-domain transfers effectively bridged industrial and net-
work protocols, exemplified by DNS to S7COMM (0.6430 F1-score)
and TLS to DNP3 (0.6670 F1-score). This demonstrates the robust-
ness of the learned representations across distinct protocol families.
The improvements were consistently statistically significant (p <
0.001, paired t-test), with average gains of +19.8% in single-source
and +23.8% in multi-source configurations. The 95% confidence
intervals further showed no overlap between baseline and transfer
methods. These results validate that our protocol-agnostic encoder
captures transferable features that generalize across domains, while
multi-source pre-training offers complementary knowledge for en-
hanced adaptation.

3.4. Computational Efficiency

The cross-protocol transfer learning framework demonstrates favor-
able efficiency trade-offs in practical deployment. While the uni-
fied model incurs higher initial training costs compared to single-
protocol models, it achieves significant computational savings dur-
ing adaptation to new protocols. Pre-training on multiple source pro-
tocols requires approximately 6 GPU-hours, but subsequent target
protocol adaptation completes in under 1 GPU-hour—an 85% re-
duction compared to training protocol-specific models from scratch.
This efficiency gain becomes particularly pronounced when deploy-
ing to multiple target protocols, as the shared encoder weights are
reused across all adaptations. Furthermore, the frozen encoder strat-
egy during initial transfer reduces memory requirements by 60%,
enabling deployment on resource-constrained environments while
maintaining parsing accuracy.

3.5. Ablation Study

To analyze the contribution of each component, we conducted ab-
lation studies on DNP3 protocol with S7COMM and Modbus as
source protocols. Removing transfer learning resulted in a 43.1%
F1-score decrease, validating our core hypothesis that cross-protocol
knowledge transfer is essential. The absence of positional encoding
led to a 20.6% accuracy drop, highlighting its critical role in cap-
turing protocol field positions. Reducing transformer layers from
6 to 4 caused a 5.4% performance degradation, while using equal
loss weights instead of our weighted scheme decreased F1-score by
5.8%. The multi-task learning framework contributed 12.8% to over-
all performance, demonstrating that jointly learning boundaries and
semantic types enhances feature representations. Removing density
regularization resulted in over-prediction of boundaries, reducing
perfection by 3.4%. These findings confirm that all components con-
tribute meaningfully, with transfer learning and positional encoding
being the most critical factors.

4. CONCLUSION AND FUTURE WORK

We present CrossPRE, a transformer-based framework for cross-
domain protocol reverse engineering with unified semantic label-
ing and hierarchical transfer learning architecture enabling effec-
tive knowledge transfer between heterogeneous protocols. Through
comprehensive evaluation, we demonstrate superior performance in
protocol field boundary identification and semantic understanding
across industrial control and network protocols. The framework rep-
resents a significant advance for practical security applications in-
cluding protocol fuzzing and anomaly detection.
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