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Throughout the last two decades, complex systems have been modeled as complex networks by captur-
ing pairwise interactions. However, as research has progressed, it has been shown that many systems
would lose much useful information after modeling the pairwise interaction relationship. According to
study results, higher-order interactions are becoming more generally accepted as an essential element
of complex systems. Hypergraphs may be used to explore the relationships between higher-order struc-
tures and functions in complex systems and capture higher-order interactions. After the initial failure of a
hypergraph network, cascading failures may occur, just as they can with a simple network. Previous
research has concentrated on random initial failures, and how hypergraph networks adapt to targeted
attacks remains unanswered. In this research, we build a mathematical framework to explore the robust-
ness of hypergraph networks against targeted attacks based on the magnitude of the hyperedge’s cardi-
nality. We discovered that when the probability of large cardinality hyperedges being deleted grows, the
network becomes more fragile.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the past twenty years, the theory of network science has been
developing and improving (Newman et al., 2010; Cohen et al.,
2010). In recent years, researchers have found that many systems
modeled by pairwise interaction will lose some important infor-
mation in the network. Because more and more research results
show that higher-order interaction is considered as a basic aspect
of complex systems, such as brain neural network and social con-
tact network (Zhao et al., 2022; G. Ghoshal et al., 2009; Li et al.,
2022).

The network describes the universal connection between differ-
ent things in the objective world. Usually, this kind of connection is
expressed through a pairwise interaction relationship; that is, if
there is some connection between two objective objects, according
to the theory of network science (Shao et al., 2009; Newman,
2002), there is an edge between the nodes corresponding to the
objects when constructing the network (Bondy et al., 1976;
Berahmand et al., 2021; Peng et al., 2020). However, in the real
world, there are higher-order relationships. Like social networks
(Singh et al., 2021), there are interactive relationships between dif-
ferent social media users, such as exchanging messages and paying
attention to each other in the same group. In this case, a simple
network can not accurately describe the relationship between
users but needs to design a hypergraph network to describe the
dynamic operation and interaction between social users. For exam-
ple, a hyperedge can represent a group of closely interacting users
who are regarded as nodes in a hypergraph network (Alotaibi and
Rhouma, 2021; Wang et al., 2018; Zhou et al., 2020).

A simple graph consists of nodes and edges. If there is a rela-
tionship between two nodes, edges connect them. The node’s
degree is the number of edges connecting to a node in an undi-
rected graph. Hypergraph (Bretto, 2013) is the extension of the
graph; the number of nodes contained by hyperedges is called
the hyperdegree of nodes, which is represented by k. The number
of nodes in the hyperedge becomes the cardinal number of the
hyperedge, which is represented by m. If the cardinal size of all
hyperedges in the hypergraph is the same and m ¼ 2, the hyper-
graph is reduced to a simple graph, and the definition of hyperde-
gree is simplified to that of degree (Battiston et al., 2020).

Considering the higher-order interaction of networks, the field
of hypergraph has attracted extensive attention from scientists.
In 2021, Sun and Bianconi (2021) studied the cascading failures
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process of nodes after random failure in single-layer and multi-
layer random hypergraph networks based on the random attack
on hypergraph and successfully derived the theoretical formula.
The percolation process on the hypergraph under random failure
is revealed. Previously, a large number of experiments have proved
that in simple networks, targeted attacks are more destructive to
the network than random attacks. Is this the same in hypergraph
networks? Based on this, we are committed to studying how the
network robustness changes under the target attack based on the
size of hyperedge’s cardinality in random hypergraph networks.

This paper provides a framework for thoroughly analyzing the
resilience of random hypergraph networks against target attacks
based on the magnitude of hyperedge’s cardinality. Our framework
can predict the threshold point of state transition from steady-
state to broken-state. We find that similar to the random failure
case, the targeted attack on the random hypergraph also shows a
second-order phase transition (Parshani et al., 2010). The contribu-
tions are as follows:

� Compared with the research of random failure in hypergraph
networks, we first propose a target attack strategy based on
the size of hyperedge’s cardinality. Through mathematical
derivation, we get a strict theoretical framework. The effective-
ness and correctness of the framework are verified in the simu-
lation. We can conclude that the robustness of the network is
more vulnerable with the increase of the probability that the
hyperedge with large cardinality is removed.

� Similar to the conclusion that the targeted attacks is more
destructive to the simple network than the random attacks,
we also found that in the hypergraph network, attacking those
hyperedges with large cardinality makes the network collapse
faster than randomly removing the hyperedges.

� We have carried out experiments on artificial hypergraph net-
work, and it can be found that our theoretical derivation results
are consistent with the experimental simulation results. In
addition, we find that the phase transition caused by targeted
attacks is also a second-order phase transition, just as the cas-
cading failures of hypergraph network caused by random
attacks.

2. Related works

We will mostly discuss node-based and edge-based attacks in
this section.

2.1. Node-based-attacks

The percolation problem is to analyze the relationship between
the giant connected cluster (GCC) and node (or edge) occupancy
probability p after removing 1� pð Þ fraction nodes (or edges).
Node-based attacks are often inseparable from the site percolation
model. There are two selection methods for removing nodes: ran-
dom selection removal (random attack), and selection removal
according to the attributes of nodes (target attack).

For random attacks, as early as 2000, Callaway et al. (2000)
found that the reciprocal of the network average degree is equal
to the phase transition point of percolation by constructing an
Erdös-Rényi (ER) random network. However, Cohen et al. (2011)
found that almost all nodes need to be removed to make the
Scale-Free (SF) network collapse ultimately. Therefore, it is con-
cluded that the network has strong robustness against random
attacks. In 2010, the research of Buldyrev et al. (2010) was of great
significance, shifting researchers’ attention from the previous
research of single-layer networks to the research of multi-layer
networks. It finds the threshold of random attack in multi-layer
interdependent networks and obtains its robustness under certain
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conditions. With time development, 2021 is also a year of great sig-
nificance. Different from the above simple networks, Sun and
Bianconi (2021) began to study the robustness of hypergraph net-
works with higher-order interaction against random attacks and
established a mathematical framework.

Because the difference in node degree in an ER random network
is not very visible when the target attacks the single-layer network,
the effect of the node with a high-degree target attack is not very
significant. However, in the SF network, due to the significant dif-
ference of node degree values, Cohen et al. (2001) found that the
network can collapse as long as several central nodes in the net-
work are removed.

After 2010, even though we know that high-degree nodes may
have a significant influence on the resilience of single-layer net-
works, Huang et al. (2011) discovered that changing the robustness
of networks by attacking high-degree nodes in interdependent net-
works is challenging. In 2021, different from target attacks in undi-
rected networks, Xu et al. (2021) studied the robustness of relying
on directed networks to deal with target attacks on high- or low-
degree nodes.
2.2. Edge-based-attacks

In real life, we can effectively protect important nodes, such as
power stations, but it is challenging to protect edges, such as trans-
mission lines. Therefore, the research on edge attacks is more
meaningful, and the research on bond percolation is edge-based-
attack. Compared with random edge removal, target attack edge
is more likely to lead to network collapse.

As early as 2000, Moore and Newman (2000) investigated the
bond percolation problem on one-dimensional small-world net-
works using the disease transmission problem as a model.
Newman et al. (2002) went on to investigate the bond percolation
problem in two-dimensional small-world networks later. Li et al.
(2012) revealed in detail the cascading failures process of different
classical networks (ER, SF, WS networks) under the strategy of
removing the highest-load edges. Unlike the classic method of
deliberately selecting the edge with the highest-load for removal,
Wang and Rong (2011) proposed two new edge-based-attack
strategies (choose the edge with the lowest-load and the edge with
a minor ratio of neighboring edges’ total capacity to the capacity of
the attacked edge) to study the resilience of the United States’
western power grid. Hackett et al. (2016) studied the problem of
bond percolation on multi-layer networks in detail. Wang et al.
(2018) mainly discussed how SF networks respond to two different
edge-based-attack, that is, removing edges by ascending or
descending order of the loads. Different from the usual definition
of edge load by the degree or the betweenness, Hao et al. (2020)
defined the initial load on edge using harmonic closeness and then
attacked the edge based on this definition to analyze the network’s
robustness. Other researchers use edge removal strategy to mini-
mize the transmission range of infectious diseases or to study
the robustness of network (Yang et al., 2013; Nie et al., 2014;
Wang and Liu, 2017).

The above edge attacks are carried out on simple networks with
pairwise interaction. However, in the research in 2021, Jhun (2021)
studied effective epidemic control strategies in hypergraph net-
works, including immunization against hyperedges with high
simultaneous infection probability.
3. Preliminaries and theoretical framework

Since the number of nodes that can be included in the hyper-
edge is greater than or equal to 2, in order to facilitate the calcula-
tion of the distribution of hyperedge’s cardinality in theoretical
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derivation. We apply the idea of transforming hypergraph into a
factor graph to tackle the dynamic problem in response to targeted
attacks. We abstract the hyperedge into the corresponding factor
node, and calculate its degree according to the number of nodes
connected with it, so as to calculate the degree distribution of
the hyperedge’s cardinality. For details, refer to Sun and Bianconi
(2021). At the moment, the essence of a factor graph is a bipartite
graph made up of nodes and factor nodes. The targeted attack on
the hyperedge in the hypergraph is equivalent to the targeted
attack on the factor node in the factor graph. When the hyperedge
is removed, the higher-order interaction between the nodes con-
tained in the hyperedge disappears. Some nodes may lose their
connectivity with the network, which significantly impacts the
robustness of the network. Fig. 1 illustrates the transformation of
a hypergraph into its corresponding factor graph.

In addition, it is worth noting that although hyperedges can be
included in hyperedges when constructing a random hypergraph,
because hyperedges randomly include nodes, when node v i and
node v j are known to exist in a hyperedge ei at the same time,
the likelihood that node v i and node v j exist in another hyperedge
ej at the same time tends to 0, and when N tends to infinity. Sim-
ilarly, the probability that three or more nodes exist on two differ-
ent hyperedges at the same time will tend to 0 exponentially
(Buldyrev et al., 2010). As a result, the factor graph matching to
the random hypergraph has a locally tree-like topology, implying
no so-called ”circle”. To begin, give each factor node a Xb mið Þ value
to represent the inactivation probability of the factor node ei,
where mi represents the number of nodes included in hyperedge
ei, that is, the size of hyperedge. To prevent the occurrence of sin-
gularities, we use mi þ 1ð Þ (Gallos et al., 2005), the function family
is obtained

Xb mið Þ ¼ mi þ 1ð Þb �
XN0

i¼1

mi þ 1ð Þb
" #�1

;�1 < b < þ1: ð1Þ

where N0 is the total number of hyperedges, it is not difficult to con-
sider several obvious situations. When b > 0, the larger the size of
the hyperedge, the easier it is to be removed. When b < 0, the smal-
ler the size of the hyperedge, the easier it is to be removed. When b

= 0, X0 ¼ 1=N0, indicates that the hyperedge is removed randomly.
When b ! 1, it indicates that hyperedges are removed in strict
order of size from large to small (as shown in Fig. 2).

Next, the derivation process of the theoretical framework we
use is introduced in detail. In the factor graph, the generating func-
tion of the node’s degree distribution is defined as

w0 xð Þ �
X
k

P kð Þxk: ð2Þ
Fig. 1. The figure is a schematic diagram of transforming a hypergraph into a factor
graph. The hypergraph comprises nine nodes and six hyperedges (panel (a)). Panel
(b) is the factor graph corresponding to the hypergraph. The black dot represents
the node, and the yellow dot, red triangle, blue square, and green pentagon
represent the hyperedges with a cardinality 2, 3, 4, and 5, respectively.
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where P kð Þ denotes the node’s degree distribution. (k is actually
expressed as the hyperdegree in the hypergraph), and the excess
degree distribution’s generating function is

w1 xð Þ ¼ w0
0 xð Þ

w0
0 1ð Þ : ð3Þ

The generating function of the factor node’s degree distribution
is defined as

�w0 xð Þ �
X
m

bP mð Þxm: ð4Þ

where bP mð Þ denotes the factor node’s degree distribution (m is
actually expressed as the size of the hyperedge in the hypergraph),
and the excess degree distribution’s generating function is

�w1 xð Þ ¼
�w0
0 xð Þ

�w0
0 1ð Þ : ð5Þ

Assume that each factor node gets deleted at random with a
percentage of 1� pð Þ, Sun and Bianconi (2021) define the likeli-
hood of reaching a factor node belonging to the GCC from a node
along with the edge as ŝ, the likelihood of reaching a node belong-
ing to the GCC from a factor node along the edge as s, as shown in
Fig. 3. The self-consistent equations (Feng et al., 2015) of s and ŝ
are:

ŝ ¼ p
X
m

m
mh i

bP mð Þ 1� 1� sð Þm�1
h i

;

s ¼
X
k

k
kh i P kð Þ 1� 1� ŝð Þk�1

h i
:

ð6Þ

The order parameter R expresses the ratio of GCC size to initial
network size in steady-state, and R can be solved by ŝ

R ¼ 1�
X
k

P kð Þ 1� ŝð Þk ð7Þ

Our goal is to turn the hypergraph’s target attack problem into a
random attack problem that can be solved using the equation
above. According to the Eqs. (2)–(5), the Eqs. (6) and (7) can be
transformed into

ŝ ¼ p 1� �w1 1� sð Þ� �
;

s ¼ 1� w1 1� ŝð Þð Þ: ð8Þ

and

R ¼ 1� w0 1� ŝð Þg ð9Þ
The bottleneck of hypergraph network research lies in the lack

of more novel mathematical tools. However, there are many arti-
cles on target attacks against node degrees on simple networks,
which also brings some inspiration to our work (Han et al., 2021;
Dong et al., 2012; Dong et al., 2013). We initially try to find the
relationship between the cardinality of hyperedge and node
degrees and try to solve our problem (as shown in Fig. 4). Unfortu-
nately, this problem has not been solved. Nevertheless, there are
also unexpected gains. During the experiment, we found that the
degree distribution of nodes is in proportion to the distribution
of the cardinality of the hyperedge, which is related to the size of
the average hyperdegree, as shown in Fig. 5 (a)-(c).

Since the nodes and factor nodes are randomly connected, it is
not difficult to imagine that the degree distribution of the factor
node after the mapping and the degree distribution before the
mapping should also be proportional when the average hyperde-
gree is certain (as shown in Fig. 6). For the sake of the preciseness



Fig. 2. The factor graph comprises thirteen nodes and eight factor nodes. Panels (a), (b), and (c) are schematic diagrams of the size of GCC in the network when b is less than,
equal to or greater than 0, respectively. We can see that with the increase of b, the probability of removing factor nodes with large degree is also increasing, and the size of
GCC in the network is becoming smaller and smaller.

Fig. 3. Panels (a) and (b) depict ŝ and s, respectively. A node is in GCC if it is
connected to a factor node and at least one of the other nodes connected to the
factor node is in GGC. When a factor node is connected to a node and at least one of
the other factor nodes connected to the node is in GGC, the factor node is in GCC as
well.

Fig. 4. The graph describes the relationship between the cardinality of the
hyperedge and the node degree. The factor node provides a path for the nodes
connected to it, thus affecting its degree. It is not difficult to see that the degree of a
node has a certain relationship with the size of the hyperedge’s cardinality
connected by the node.
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of scientific research, we also conducted experiments, and the
experimental results confirmed our conjecture, as shown in
Fig. 5(d)-(f). If two-factor nodes are connected to the same node
in the factor graph, that node acts as a bridge, providing a path
for the two-factor nodes; it can be regarded as two-factor nodes
connected because the node has never been deleted in a targeted
attack, knowing this is very helpful for us to solve the problem.

In a network composed of only factor nodes, according to the
Eq. (1), after deleting the 1� pð Þpercentage of factor nodes from
the network, calculate the degree distribution Ap mð Þ of the
not-deleted factor nodes while preserving the edges of the not-
deleted factor nodes that connect to the deleted factor nodes.
Define wp mð Þ as the number of factor nodes with degree m,
4682
Ap mð Þ ¼ wp mð Þ
pN0 : ð10Þ

When another node is deleted, Ap mð Þ changes as follows:

w p�1=N0ð Þ mð Þ ¼ wp mð Þ � Ap mð Þ mþ 1ð ÞbX
m

Ap mð Þ mþ 1ð Þb ; ð11Þ

When N0 ! 1, the Eq. (11) may be written as the derivative of
wp mð Þwith regard to p, and p is differentiated in Eq. (10), we can get

�p
dwp mð Þ

dp
¼ Ap mð Þ � Ap mð Þ mþ 1ð ÞbX

m

Ap mð Þ mþ 1ð Þb ; ð12Þ

this is correct for N0 ! 1. To solve Eq. (12), we establish a function

wb xð Þ � P
mP mð Þx mþ1ð Þb , and then, following Shao et al. (2009),

create a new parameter t � w�1
b pð Þ.

p ¼ wb tð Þ �
X
m

P mð Þt mþ1ð Þb : ð13Þ

We discover that the solution to Eq. (12) is

Ap mð Þ ¼ P mð Þ t
mþ1ð Þb

wb tð Þ ¼ 1
p
P mð Þt mþ1ð Þb ; ð14Þ

andX
m

Ap mð Þ mþ 1ð Þb ¼ tw0
b tð Þ

wb tð Þ : ð15Þ

this can be demonstrated to fulfill Eq. (12). After deleting a
percentage 1� pð Þ of the factor nodes from the network using
Eq. (1), the generating function of the factor nodes that remain in
the network is

wb xð Þ �
X
m

Ap mð Þxm ¼ 1
p

X
m

P mð Þt mþ1ð Þbxm; ð16Þ

Because the factor nodes are connected at random, the likeli-
hood that an edge will terminate at a not-deleted factor node is
equal to the ratio of the number of edges starting from not-
deleted factor nodes to the total number of edges starting from
all the factor nodes in the original network:

~p � pN0 m pð Þh i
N0 mh i ¼

X
m

P mð Þmt mþ1ð ÞbX
m

P mð Þm : ð17Þ

where the average degree of the remaining nodes is
m pð Þh i ¼ P

mAp mð Þm. Deleting the edges of a randomly connected



Fig. 5. Based on the random hypergraph network with N ¼ 105
� �

nodes whose hyperdegree distribution and hyperedge’s cardinality distribution meet Poisson distribution,
panels (a)-(c) is fixed expectation mh i ¼ 3ð Þ and set expectation kh i = 3, 4 and 5 respectively. It can be seen that the cardinality distribution and degree distribution are more
widely distributed in a certain proportion with the increase of kh i. Panels (d)-(f) is fixed expectation kh i ¼ 3ð Þ, and set expectation mh i = 3, 4 and 5 respectively. It can be seen
that the degree distribution after the mapping of factor node is in a certain proportion to the degree distribution before the mapping, and the distribution is wider with the
increase of mh i. Note that the abscissa k and m here represent different meanings under different backgrounds.

Fig. 6. This figure describes the relationship between the degree of factor nodes
before and after mapping. The node provides a path for the factor node connected to
it, which affects the degree of the changed factor node. It is not difficult to see that
the degree of the factor node after the mapping has a specific relationship with the
degree of the factor node before the mapping.
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network that terminate at the deleted factor nodes is equal to ran-
domly deleting a 1� ~pð Þ percentage of the not-deleted factor nodes’
edges. And use the same strategy as in Newman (2002), it is possi-
ble to demonstrate that the not-deleted factor node’s generating
function after random removal of 1� ~pð Þ percentage of edges equals

wc xð Þ � wb 1� ~pþ ~pxð Þ; ð18Þ
We can acquire the following relationship if we can discover a

network �weq with generation function �weq0 xð Þ, such that after ran-
domly deleting the factor nodes of percentage 1� pð Þ, that
�weq0 xð Þ ¼ wc 1� pþ pxð Þ; ð19Þ
We may derive the following conclusion via Eqs. (18) and (19)

�weq0 xð Þ ¼ wb 1� ~p
p
þ ~p
p
x

� �
; ð20Þ

The excess degree distribution’s generating function is
4683
�weq1 xð Þ ¼ w0
eq0 xð Þ

w0
eq0 1ð Þ : ð21Þ

Since the node has never been deleted from beginning to end, in
the self-consistent equations, the generating function of the hyper-
degree remains unchanged. However, the equivalent generating
function of the hyperedge’s cardinalities distribution and the
excess hyperedge’s cardinalities distribution after the targeted
attack satisfies the Eqs. (20) and (21). Therefore, the target attack
problem on hypergraph networks based on the size of the hyper-
edge can be mapped to the random attack problem on hypergraph
networks.

According to the Eqs. (8) and (21), we can get the self-consistent
equations of the equivalent network of hypergraph network under
target attack as

ŝ ¼ p 1� �weq1 1� sð Þ� �
;

s ¼ 1� w1 1� ŝð Þð Þ: ð22Þ

the order parameter R is

R ¼ 1� w0 1� ŝð Þ: ð23Þ
4. Experiment

To comprehend the impact of various hyperedge removal
strategies on the robustness of hypergraph networks, Monte-
Carlo simulation (Newman and Ziff, 2000) experiments were car-
ried out on artificial hypergraph networks. On the premise of dif-
ferent b values, we carried out experiments on different
hyperdegree distributions and hyperedge’s cardinality distribu-
tions on artificial hypergraph networks with fixed network scale
(Newman et al., 2001).



Fig. 7. Panels (a), (b) and (c) represent different values of b under kh i ¼ 2; mh i ¼ 4ð Þ; kh i ¼ 3; mh i ¼ 3ð Þ and kh i ¼ 4; mh i ¼ 2ð Þ (N ¼ 104). Panels (d), (e) and (f) represent
different values kk ¼ km = 2.6, 3.0 and 3.5 (N ¼ 2 � 102). The smooth curve represents the theoretical solution derived from mathematics, and the symbol represents the
simulation results in synthetic random hypergraph network. It is not difficult to find that the two agree well.
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For simplicity, in the first case, we obey Poisson distribution for
both hyperdegree distribution and hyperedge’s cardinality distri-
bution, that is,

P ~k
� �

¼ e�
~kh i � ~k

D E~k
=~k!

� 	
; ð24Þ

where ~k represents the degree of node, ~k
D E

represents the average

degree, also known as mathematical expectation.
Next, in a random hypergraph network with N nodes, we make

kh i and mh i meet different expectations respectively. At this point,
the number of hyperedges N0 is (N � kh i= mh i).

On a hypergraph network with a certain number of nodes
(N ¼ 104) whose the hyperdegree distribution and the cardinality
of hyperedge distribution obey Poisson distribution, we make kh i
and mh i meet kh i ¼ 2; mh i ¼ 4; kh i ¼ 3; mh i ¼ 3and
kh i ¼ 4; mh i ¼ 2respectively. And we set parameter b to - 1, 0, 1
and 2 respectively. It is worth noting that when b takes 0, the tar-
get attack problem is equivalent to the random attack problem.
Because the larger the value of b is, the greater the probability that
the hyperedge with large cardinality will be removed. The experi-
mental findings reveal that the random hypergraph network
becomes more fragile as the probability of removing hyperedges
with large cardinality increases, as shown in Fig. 7 (a) - (c).

In the second case, we obey power-law distribution for both
hyperdegree distribution and hyperedge’s cardinality distribution,
that is,

P ~k
� �

¼ ~kþ 1
� �1�k

� ~k1�k

� 	
= eM þ 1

� �1�k
� ~m1�k

� 	
; ð25Þ

Where ~k represents the degree of node, eM represents the maximum
degree, ~m represents the minimum degree.

For simplicity, we set the exponent k of two groups of nodes in
the Eq. (25) to be the same (kk ¼ km = 2.6, 3.0 and 3.5), theeMk ¼ eMm ¼

ffiffiffiffi
N

p
, the ~mk ¼ ~mm ¼ 2, and then we construct a random
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hypergraph network with (N ¼ 2 � 102) nodes. At this point, the
number of hyperedges N0 is set to be the same as the number of
nodes N. Experiments with various exponent values are carried
out, the results also reveal that the higher the likelihood of deleting
a large-size hyperedge, the faster the hypergraph network col-
lapses, as shown in Fig. 7 (d) - (f). Each of the experiments was
repeated ten times, and the final result was an average of ten
times. All the experiments were performed on a personal computer
with 4G memory and 2.50 GHz Intel i5-7200U CPU.

5. Conclusions and discussion

This study first investigates the resilience of hyperedge’s cardi-
nality distribution and random hypergraph using a mathematical
framework dependent on the size of hyperedge’s cardinality. Our
framework can well analyze the changes in the robustness of
hypergraph networks against target attacks. Firstly, in the dynamic
process, we demonstrate the impact of the random attack (b ¼ 0)
and target attack (b – 0) on the reliability of the hypergraph net-
work. It is found that a targeted attack (b > 0) is easier to affect
the reliability of the network and cause more node failures than
a random attack.

In order to facilitate the calculation, we model the hypergraph
network as a factor graph. Factor graphs are associated with hyper-
graphs through simple mapping. On this basis, we obtain the
hyperedge’s cardinality distribution. The self-consistent equations
are introduced in the theoretical derivation, and the theoretical
formula of target attack based on hyperedge’s cardinality is
derived. Then the relationship between different target attack
strategies (i.e. b takes different values) and the resilience of hyper-
graph network is obtained.

Our experiment is carried out when the basic structure of the
hypergraph network is the hyperdegree, and the cardinality of
hyperedge obeys Poisson distribution, the hyperdegree, and the
cardinality of hyperedge obeys the power-law distribution to
verify the validity of these equations proposed under various
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topological structures. Consistent with the conclusions of previous
papers on target attacks, a targeted attack is more destructive to
the network than a random attack. We find that for a single-
layer random hypergraph network, for any targeted attack with b
value, the phase transition shows a second-order phase transition.
Furthermore, when the value of b increases, the probability of
removing the hyperedge with large cardinality increases; that is,
the threshold point of state transition of the network also
increases, and the system becomes more vulnerable. Our theoreti-
cal framework can accurately find the threshold points of random
hypergraph networks in a targeted attack; these findings can help
us understand the impact of the underlying structure of hyper-
graph networks on their robustness.
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