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ABSTRACT

In complex systems, from human social networks to biological networks, pairwise interactions are insufficient to express the directed
interactions in higher-order networks since the internal function is not only contained in directed pairwise interactions but rather in directed
higher-order interactions. Therefore, researchers adopted directed higher-order networks to encode multinode interactions explicitly and
revealed that higher-order interactions induced rich critical phenomena. However, the robustness of the directed higher-order networks
has yet to receive much attention. Here, we propose a theoretical percolation model to analyze the robustness of directed higher-order
networks. We study the size of the giant connected components and the percolation threshold of our proposed model by the theory and
Monte-Carlo simulations on artificial networks and real-world networks. We find that the percolation threshold is affected by the inher-
ent properties of higher-order networks, including the heterogeneity of the hyperdegree distribution and the hyperedge cardinality, which
represents the number of nodes in the hyperedge. Increasing the hyperdegree distribution of heterogeneity or the hyperedge cardinality distri-
bution of heterogeneity in higher-order networks will make the network more vulnerable, weakening the higher-order network’s robustness.
In other words, adding higher-order directed edges enhances the robustness of the systems. Our proposed theory can reasonably predict the
simulations for percolation on artificial and real-world directed higher-order networks.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0159943

In a real network, explicitly encoded multi-node interactions can
be used to portray higher-order networks and reveal the rich crit-
icality phenomena induced by higher-order interactions. There-
fore, researchers have proposed using higher-order networks to
measure the robustness of complex systems, and studying the
influence of directivity in higher-order networks is a significant
problem. In this paper, we propose a theoretical framework to
analyze higher-order directed networks and measure the robust-
ness of different networks by analyzing the percolation process
through hyperdegree distribution and hyperedge cardinality. We
also verify the influence of higher-order directed edges on real
network environments. These findings provide valuable insights
into how the underlying structure of directed higher-order net-
works shapes network resilience, contributing to a deeper com-
prehension of this relationship.

I. INTRODUCTION

With the availability of real data, researchers have effectively
portrayed the relationships in real-world networks through net-
work descriptions.1 In general, the edges of the network are mapped
as interactions between various elements, and edges connect two
vertices by modeling the nodes in the network as components
of a complex system. It can be divided into an undirected net-
work and a directed network according to whether the connec-
tion relation is directed. Undirected networks can portray Internet
networks,2 and directed networks can portray social networks,3,4 bio-
logical networks,5,6 and email networks.7 However, in the real world,
almost all networks can be subject to targeted attacks or random
failures.8–10 For example, in May 2017, the WannaCry ransomware
virus broke out worldwide through the MS17-010 vulnerability for
financial purposes, forming a worm storm that affected the world.11
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In September 2019, bushfires in northern New South Wales, Aus-
tralia, broke out suddenly and lasted for more than four months,
destroying 10.7 million hectares of forest and bush, killing about
1 billion animals, causing irreversible damage to the ecosystem and a
$ 5 billion in economic losses.12 In March 2022, a massive power out-
age occurred in Taiwan, China. The semiconductor, optoelectronics,
and Apple supply chain systems were hit hard, and the loss of man-
ufacturers amounted to NT $6 billion.13 In order to better protect
the actual system, how to measure the robustness of the network is
worth our attention.

As a vital method for studying complicated real-world systems,
the percolation theory can be utilized to investigate network connec-
tivity and the robustness of directed networks.14,15 For the bond (site)
percolation, each edge (node) is occupied with probability p. With
the increase of the occupation probability p, the network’s giant
strongly connected component (GSCC) gradually increases. When
the GSCC changes from zero to non-zero, the occupation probabil-
ity pc is called the percolation threshold. Callaway et al.16 studied
site percolation and bond percolation through Erdös–Rényi (ER)
network and found that the percolation threshold is inversely pro-
portional to the average degree of the network. Given the directivity
of edges, Boguñá and Serrano17 proposed a general theory to study
different strongly connected components of randomly directed net-
works and found that bidirectional edges act as a catalyst in directed
random networks in the process of percolation. Unlike undirected
networks, in directed scale-free networks, the percolation proper-
ties can be captured by the in- and out-degree distribution, Schwartz
et al.18 found that the critical index of percolation in scale-free net-
works strongly depends on the presence of correlation and the index
of the degree distribution.

However, in biological networks, ecology communities, and
social networks, there is abundant evidence that pairwise interac-
tions are insufficient to portray the real world.19–21 Higher-order
interactions in the real world occur not just between nodes but
between three or more nodes.22 Dynamics on higher-order net-
works have attracted much attention in the field of network science,
including epidemic spreading,23,24 synchronization,25 and game.26

Unlike traditional research focused on pairwise temporal effects on
the single spreading dynamics, Nie et al.27 proposed a coevolution-
ary epidemic spreading model over time higher-order social net-
works considering interactions and found that networks temporarily
attenuate the effect of initial infection outbreak density thresholds.
Alvarez-Rodriguez et al.28 proposed a general implementation for
collective games in which higher-order interactions are encoded
on hypergraphs and found that additional game characteristics will
facilitate the emergence of cooperation. Directed higher-order net-
works play an essential role in the application of higher-order
dynamics. For instance, neurons are the vertices in the Caenorhab-
ditis elegans neuronal network. These one or more synapses form
the hyperedges of a network of neurons to build the higher-order
network.29 However, synapses are connected by a signal flow with
direction, in order to analyze the directed interactions in neu-
ral networks more effectively, researchers express the higher-order
interactions through directed higher-order networks.30 Tang et al.31

showed that higher-order interactions lead to topological synchro-
nization phenomena beyond pairwise interactions. The structural
symmetry can be preserved in the optimally synchronizable directed

higher-order networks. It shows that the directed higher-order net-
work plays an indispensable role in the field of higher-order network
dynamics.

Although many efforts have been devoted to the dynamics of
directed higher-order networks, the percolation of directed higher-
order networks has not been studied until now. In this paper, we
study the problem of measuring robustness on higher-order net-
works using the percolation theory. We generate a directed higher-
order network of a specific scale by giving the hyperdegree k and
the hyperedge cardinality m. The percolation threshold and the size
of giant connected components (GCCs) are derived by using the
generation function and self-consistent equation. In short, the main
contribution of this paper is as follows.

• Proposing a directed higher-order network theoretical frame-
work to study the robustness of higher-order networks. Mathe-
matical formulas deduce the percolation threshold and the size
of different GCCs. The results of simulations and theoretical
results correspond to the artificial network we constructed.

• Revealing the effects of hyperdegree and hyperedge cardinal-
ity distribution heterogeneity on the higher-order network. The
directed edges of the network are accompanied by a decrease in
hyperdegree and hyperedge cardinality, the percolation thresh-
old also decreases gradually. We conclude that the increase of
higher-order directed edges enhances the system’s robustness.
In addition, finite scale effects positively affect the percolation
process in heterogeneous directed higher-order networks.

• Our theory is validated on both artificial and real-world net-
works. We construct real-world networks and convert them into
factor graphs to simulate the percolation process in real-world
directed higher-order networks.

The rest of this article is structured as follows. In Sec. II, we
reviewed the state of the art on percolation in higher-order net-
works. Section III describes the theoretical model in detail. After our
derivation, Sec. IV introduces the simulation results of the artificially
generated network and the real-world network. Finally, in Sec. V, the
thesis is summarized, and future work has prospected.

II. RELATED WORKS

We mainly discuss percolation on two kinds of networks:
directed pairwise networks and higher-order networks.

A. Percolation on directed networks

Generally, regardless of bidirectional links, each node in a
directed simple pairwise network has two degrees, in- and out-
degrees.32 Therefore, the degree distribution of a directed network
is a joint degree distribution P(ki, ko) based on in- and out-degrees.
8(x, y) =

∑∞
ki ko

P
(
ki , ko

)
xki yko , where ki and ko represents the

in- and out-degree of the network, x and y denote any variable. As
an essential method to study complex systems, percolation plays an
indispensable role in analyzing the characteristics and structure of
directed networks.33–35 In studying the percolation of undirected net-
works, we usually discuss the size of GCCs, but the percolation of
directed networks should consider more components. In this paper,
we mainly consider three components:
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• Giant Strongly Connected Component (GSCC): the strongly
connected component in a directed network, where a vertex in
GSCC can reach any other vertex in GSCC.

• Giant In-component (GIN): the nodes of GSCC plus the nodes
leading to GSCC.

• Giant Out-component (GOUT): the nodes of GSCC plus the
nodes leading from GSCC.

In the study of percolation on directed simple pairwise net-
works, Boguñá and Serrano17 studied a general percolation theory
for random directed networks with any two-point correlations and
bidirectional edges in indicated random networks, opening new per-
spectives. Dorogovtsev et al.36 calculated the GSCC of the directed
network defined by Boguñá. Based on the GSCC of the general
definition of the directed network, they found that the size of the
GCC is closely related to the product of the in- and out-degree dis-
tribution and explained that the GSCC suffers small losses under
random attacks. Serrano and De Los Rios37 reanalyzed the tradi-
tional node percolation map of directed networks by organizing
an edge into five branches during the process of edge percolation.
It is divided into the edge in component, the in-the interface, the
edge strongly connected component, the out interface, and the edge
out component, and the final percolation simulation results are
completely consistent with the theory. van der Hoorn and Litvak38

analysis of degree dependence in complex networks and its impact
on network processes requires null models, that is, models that gen-
erate uncorrelated directed scale-free networks. However, due to
finite-size effects, the majority of models have demonstrated neg-
ative structural dependence. Using a rank-based correlation mea-
sure, we examine the behavior of these structures’ negative degree
dependence in a configuration model with directed erasure.

The above description introduces some of the work and prob-
lems encountered in the research of directed networks. Based on the
previous theoretical knowledge of directed networks, we study some
necessary properties in directed higher-order networks, including
the GCCs and percolation threshold. In the process of studying
directed scale-free networks, our model also exhibits some devia-
tions due to finite-size effects, which will be discussed in Sec. IV.

B. Percolation on higher-order networks

In mathematical theory, an undirected higher-order net-
work H(V, E) is defined by a set of nodes, V = {v1, v2, . . . , vn},
and a set of m hyperedges E = {e1, e2, . . . , em}, such that for all
α = 1, . . . , m: eα ⊂ V.39,40 If the number of hyperedges of a higher-
order network is 2, then a higher-order network is equivalent to
a simple pairwise network. That is, when the hyperedge cardinal-
ity of a higher-order network m = 2, a higher-order network is
equivalent to a normal network. In a social higher-order network,
where nodes represent users and hyperedges represent relationships
between users (such as friendships), nodes: {A, B, C, D, E}, hyper-
edges: {{A, B}, {A, C, D}, {B, C}, {C, D, E}}, the hyperdegree of node
A is 2, because of associated with it have {A, B} and {A, C, D}.
The hyperedge {A, B} has A hyperedge cardinality of 2 because it
connects nodes A and B, a total of 2 nodes. The hyperdegree is
concerned with the number of connections between the node and
the hyperedge, while the hyperedge cardinality is concerned with
the number of nodes connected to the hyperedge. The analysis of

social higher-order networks can help us to deeply understand the
complex relationship between users, reveal the underlying structure
and law of the network, and thus provide valuable insights for the
management, optimization, and development of social networks.

In the paper of Sun and Bianconi,41 a random higher-order net-
work is defined as H(V, H), where V is a set of n distinct vertices
and H is a set of hyperedges represented by m sizes of different
hyperedge cardinalities. The number of hyperedges on a node is
called the hyperdegree. For the convenience of calculation, it is nec-
essary to transform the higher-order network into a factor graph.
Factor graphs are associated with higher-order networks through
simple mappings. The node set V and the node set H of the fac-
tor graph map to the node set V and the hyperedge set H of the
higher-order network. The hyperdegree distribution P(k) and the
hyperedge cardinality distribution P(m) correspond to the degree
distribution of nodes and factor nodes in the factor graph, respec-
tively, where the hyperdegree is represented by k and the cardinality
size of the hyperedge is represented by m.

Percolation in undirected higher-order networks has attracted
many researchers’ interest. Peng et al.42 describe the higher-order
networks percolation under the network’s target, through the theo-
retical framework to analyze random higher-order network robust-
ness, and found the target attack easier than random attack to break
down the higher-order network in addition to attacking the higher-
order network nodes. Peng et al.43 studied by attacking hyperedges
to disrupt the higher-order network. When a high probability of
removing hyperedges is found, the network becomes more and more
fragile. In addition, Zhao et al.44,45 used simplicial complexes to study
the robustness of higher-order networks and found that double-
phase transitions occur when the number of triangles exceeds a cer-
tain number. To better characterize the connectivity of higher-order
networks, Kim and Goh46 found the influence of higher-order com-
ponents in the higher-order network. By introducing the concept of
subgroups of nodes, confirmation of the existence of higher-order
components will significantly impact contagion dynamics.

III. MODEL

Before introducing the directed higher-order network model,
let us introduce the directed 2-hyperlink. As shown in Fig. 1(a), only
the network with first-order interaction is studied in the directed
pairwise networks. In the directed higher-order networks, we con-
sider the directed 2-hyperlink interactions, describing pairwise
interactions between elements of a complex system.47 A directed
2-hyperlink is defined as the direction in which each permutation
of the three nodes leads to a different 2-hyperlinks.48 According
to the directivity of edges, there are eight types of the directed
2-hyperlink in Fig. 1(a), and only 2 are shown here for simplicity.
Our model needs to use this idea to reflect higher-order interactions
in higher-order networks.

Without losing generality, we define a directed higher-order
network through mathematical language. In Alain Bretto’s higher-
order networks review,39 a directed higher-order network is defined
as an ordered pair: EH =

(
V; EE =

({−→ei : i ∈ I
)
, where V is a finite

set of vertices and EE is a set of hyperedge with finite index set I.
Each hyperedge −→ei is an ordered pair. Similar to the definition of
a higher-order network given in Sec. II B, in a directed higher-order

Chaos 33, 083106 (2023); doi: 10.1063/5.0159943 33, 083106-3

Published under an exclusive license by AIP Publishing

 04 M
arch 2024 08:43:37

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 1. Schematic on constructing the directed higher-order network, which is converted into a factor graph, and the size of each GCC of the network is obtained by percolating
the factor graph. (a) Different order hyperlink and method of constructing directed higher-order model. First, the directed network is generated according to the generated
degree distribution sequence, and then the directed triangle is randomly generated to construct the directed higher-order network. (b) The constructed higher-order network
is converted into a factor graph. Solid lines connect the connected nodes. The upper layer represents the factor nodes and the hyperedges in the higher-order network, and
the lower layer represents the vertices. The vertices are connected through directed interaction. (c) The light blue node set is GSCC, the GSCC node set and a purple node
make up GIN, and the GSCC node set and two orange-gray nodes make up GOUT. The white nodes and triangles represent the hyperedges, and the columns below are the
different nodes that correspond to the nodes in the higher-order network.

network, hyperedges represent the directed interaction of two ver-
tices with directions. According to the definition of the directed
higher-order network GDH(V, U, E), which is essentially a bipartite
graph, after all, V is the set of nodes, U represents a set of factor

nodes, E of the edges between the nodes and the factor nodes, and
each interaction connects a node one-way to a factor node. The fac-
tor graph is related to the directed higher-order network by simply
mapping. In the directed higher-order network, we introduce the
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concepts of ki and ko to represent the size of the in- and out-degree
of the higher-order network, referred to as the hyperdegree, which
means the number of nodes connected to factor nodes. The num-
ber of factor nodes connected to nodes is represented by mi and mo,
referred to as hyperedge cardinality.

The following is our theoretical derivation from the generat-
ing function. The definition of the generating function of the in-
and out-hyperdegrees distribution of the initial network node is as
follows:49

G0(x, y) =
∑

kiko

P(ki, ko)x
kiyko , (1)

where P(ki, ko) is the joint degree distribution of a directed higher-
order network and x and y denote any variable. Since the sum of the
in- and out-hyperdegrees is zero, P(ki, ko) must satisfy the constraint

∑

kiko

P(ki, ko)(ki − ko) = 0. (2)

With G0, we can define the generating functions Gi
0, which denotes

the number of outward edges that leave a randomly chosen vertex
the number of vertices leaving by following a randomly chosen edge,
and G i

1, which denotes the number leaving the vertex reached by
following a randomly chosen edge,50

Gi
0(y) = G0(1, y), (3)

G i
1(y) =

1

ki

∂G0(x, y)

∂x

∣∣∣∣
x=1

. (4)

Similarly, define the generating functions Go
0 and G o

1 for the
number arriving at such a vertex,

Go
0(x) = G0(x, 1), (5)

G o
1 (x) =

1

ko

∂G0(x, y)

∂y

∣∣∣∣
y=1

. (6)

Average hyperdegree of a directed higher-order network,

〈k〉 =
∑

ki

P(ki, ko)ki =
∑

ko

P(ki, ko)ko. (7)

Based on the definition of hyperedges, the generating func-
tion definition of the cardinality distribution of the in- and out-
hyperedges of the initial network node is as follows:

Ĝ0(x, y) =
∑

mimo

P̂ (mi, mo) xmiymo . (8)

With Ĝ0, we can define the generating functions Ĝi
0 for the

number of outward points leaving a randomly chosen factor of the
node, and Ĝi

1 for the number of points leaving a factor of the node

by following a randomly chosen edge,

Ĝi
0(y) = Ĝ0(1, y), (9)

Ĝ i
1(y) =

1

mi

∂Ĝ0(x, y)

∂x

∣∣∣∣∣
x=1

. (10)

In the same way, we can define the number of generating
functions Ĝo

0 and Ĝo
1 for the number arriving at such a vertex,

Ĝo
0(x) = Ĝ0(x, 1), (11)

Ĝ o
1 (x) =

1

mo

∂Ĝ0(x, y)

∂y

∣∣∣∣∣
y=1

. (12)

The average cardinality of the directed higher-order network,

〈m〉 =
∑

mi

P̂ ( mi, mo) mi =
∑

mo

P̂ ( mi, mo) mo. (13)

With the idea of the factor graph, given the hyperdegree size ki

and ko, and the hyperedge cardinality mi and mo, we can get four
parameters to quantify the network. To simplify the network, we
set k = ki = ko and m = mi = mo. Given that the initial number of
nodes in the network is N, we calculate the number of factor nodes
in the network due to the relationship between k and m in the factor
graph: Nfactor = N ∗ k/m. With the given parameters above, we can
construct the directed random higher-order network conforming to
the hyperdegree size k and the hyperedge cardinality m.

As shown in Fig. 1(a), we will have a model to generate the
higher-order network divided into two steps. In the first step, a
specific degree sequence was generated for the random network
through the degree distribution function. The second step is through
the method of random connections, combined with the introduction
of the model previously defined by the concept of a random triangle,
to generate the different directed random triangles and generate the
directed higher-order network.51

In our directed higher-order network model, the network
structure is random and sparse, so for a large enough network, it
can be considered as a tree. That is, there is no circle in the network.
The percolation problem of a directed higher-order network can be
solved accurately by generating functions. To represent the initial
degree distribution of a higher-order network, we define the hyper-
degree distribution P(k) and the hyperedge cardinality distribution
P̂(m) correspond to the degree distributions of the nodes and factor
nodes in the factor graph, respectively.41

As a random higher-order network map’s component graph is
a local tree, we take into account its corresponding factor graphs to
depict percolation on directed higher-order networks. We can use
a self-consistent equation to represent the probability of reaching a
factor node belonging to the GCC from a node along with the edge,

Ŝ =
∑

m

m

〈m〉
P̂(m)

[
1 − (1 − S)m−1

]
. (14)

In Eq. (14), m − 1 means that the factor node removes the edge
from which it originates, (1 − S)m−1 represents the probability that
a factor node cannot reach a node from the GCC; taking the sum
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and average over all the probabilities, we can get Ŝ. In the same
way, (1 − S)k−1 represents the probability that a normal node cannot
reach a factor node from the GCC, S is the probability that a node
from a node belongs to a GCC,

S = p
∑

k

k

〈k〉
P(k)

[
1 −

(
1 − Ŝ

)k−1
]

. (15)

The order parameters of the percolation process, which are
given by the probability R of finding a node in the GCC and the
probability R̂ of finding a hyperedge in the GCC,

R = 1 −
∑

k

P(k)
(
1 − Ŝ

)k

, (16)

R̂ = 1 −
∑

m

P̂(m)(1 − S)m. (17)

Equations (13)–(17) can be used to investigate the fundamental
aspects of percolation and determine how robust higher-order net-
works are. In the directed higher-order networks, we consider the
probability of finding a node in a GCC as the order parameter R
to characterize the percolation problem. Through the definition of
the giant in-component and the giant out-component, we give the
formula of Ri and Ro,

Ri = p



1 −

∑

kiko

Pi(ki, ko)
(
1 − ŝ

)i



 , (18)

Ro = p



1 −

∑

kiko

Po(ki, ko)
(
1 − ŝ

)o



 . (19)

Using the generating function G0(x, y), the above equation can
be simplified as

Ri = p
{
1 − G0

(
1 − ŝi, 1

)}
, (20)

Ro = p
{
1 − G0

(
1, 1 − ŝo

)}
. (21)

Equations (17) and (19) give the relationship between the directed
higher-order network Ri and Si, Ro and So, but based on this formula,
S or R cannot be solved. Therefore, we use Eq. (12) in Peng et al.,42

to derive the following formula:

Ŝ = 1 − Ĥ1(1 − S), (22)

S = p
(
1 − H1

(
1 − Ŝ

))
. (23)

The generating function in the undirected random higher-order
network is represented by H in the formula.

Since directed higher-order networks can also be mapped to
factor graphs, we give formulas for S and Ŝ,

Ŝi =
∑

mimo

m

〈m〉
P(mi, mo)

[
1 −

(
1 − Ŝi

)m−1
]

, (24)

Si = p
∑

kiko

k

〈k〉
P(ki, ko)

[
1 −

(
1 − Ŝi

)k−1
]

. (25)

Similarly, we derive the formula for So and Ŝo,

Ŝo =
∑

mimo

m

〈m〉
P(mi, mo)

[
1 −

(
1 − Ŝi

)m−1
]

, (26)

So = p
∑

kiko

k

〈k〉
P(ki, ko)

[
1 −

(
1 − Ŝi

)k−1
]

. (27)

According to the above equation, the size of the giant in-
component can be deduced by

Ŝi = 1 − Ĝ i
1 (1, 1 − Si) , (28)

Si = p
(
1 − G i

1

(
1, 1 − Ŝi

))
. (29)

The giant out-component can be deduced by

Ŝo = 1 − Ĝ o
1 (1 − So, 1) , (30)

So = p
(
1 − G o

1

(
1 − Ŝo, 1

))
. (31)

In Eq. (29), Si represents the size of the GIN. The right end
represents that if an edge of a node leads to the GIN, then this edge
must belong to the GIN and has nothing to do with the in-degree. In
the same way, in Eq. (31), So represents the size of the GOUT, and
the right end of the formula represents a node. If there is an edge
from the GOUT, then this edge must belong to the GOUT and has
nothing to do with the out-degree.

With Eqs. (29)–(31), we compute the SGSCC of Eq. (32) by bring-
ing Ri and Ro into the network except for the GSCC size of the
directed higher-order network,

SGSCC = p
(
1 − G o

1

(
1 − Ŝo, 1

)
− G i

1

(
1, 1 − Ŝi

)

+ G1

(
1 − Ŝo, 1 − Ŝi

))
. (32)

In Eq. (32), SGSCC represents the size of the strongly connected com-
ponent of the network. The right side represents a node with an edge
leading to the giant in-component, and an edge coming from the
giant out-component. Then, it must reach all nodes in the GSCC,
and all the GSCC nodes can reach this node. That is, it belongs to the
GSCC, and the last term G1(1 − Ŝo, 1 − Ŝi) represents the probabil-
ity of compensating for repeated deductions of the first two terms.
In this way, we can substitute Eqs. (2)–(6) to solve the GSCC of the
directed higher-order network.

In studying the robustness of higher-order networks, we mainly
focus on the size of the GSCC of the network. In addition, we also
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pay attention to the critical point when the network has phase transi-
tion, that is, when the node probability changes, calculate the size of
the percolation threshold. In this paper, we calculate the percolation
threshold of random directed higher-order networks and scale-free
higher-order networks, which are consistent with Eq. (33),

pc =
〈k〉

〈k(k − 1)〉

〈m〉

〈m(m − 1)〉
, (33)

where 〈k〉 represents the average degree of a directed higher-order
network and 〈m〉 represents the average hyperedge cardinality of
a directed higher-order network. From the formula of the perco-
lation threshold, we can find that the percolation threshold of the
directed higher-order network is only related to the network’s k and
m. When 〈k〉 and 〈m〉 are fixed, 〈k(k − 1)〉 reveals the heterogeneity
of the average degree of the network, 〈m(m − 1)〉 reveals the hetero-
geneity of the hyperedge cardinality in the network. When k and m
become larger and larger, the percolation threshold decreases grad-
ually. We will discuss how to calculate percolation thresholds for
different networks one by one in Sec. IV.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We used artificially constructed networks and real-world net-
work datasets to study the robustness of the directed higher-order

networks. We calculated the GCCs and percolation threshold
through the theoretical formula to measure the robustness of the
networks.

A. Homogeneous directed higher-order networks

As shown in Fig. 2, we perform Monte-Carlo simulations
of the generated networks by constructing homogeneous directed
higher-order networks. Different percolation experimental results
are obtained by changing the network with different hyperdegree
k and hyperedge cardinality m. It can be seen that the percola-
tion threshold tends to decrease as the product of hyperdegree k
and hyperedge cardinality m increases. The network’s three GCCs
undergo phase transitions simultaneously, and the sizes of the GIN
and the GOUT are larger than the GSCC after the phase transition
point.

The critical points of Si and So of the directed higher-order net-
work are the same as those of the tree random directed network and
have nothing to do with the degree distribution and the correlation
between the in-and out-degree. The GIN and the GOUT appear
together with the GSCC, and it is impossible to emerge as one of
them alone. Therefore, the critical points of the GIN and the GOUT
of the homogeneous directed higher-order networks are the same,
and the critical points of the GSCC are the same, which is confirmed
by the simulation results.

FIG. 2. Percolation on the homogeneous directed higher-order network. Experiment under different conditions: (a)–(f) k ∈ {2, 3, 4}, m ∈ {2, 3, 4}. With the increase of
node removal probability 1 − p, the process of network disintegration is expressed by the size change of GCCs in the network. The percolation simulation of the directed
higher-order network is consistent with the theory.
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When the cardinality of the hyperdegree and hyperedge cardi-
nality follows Poisson degree distribution, then

〈k(k − 1)〉

〈k〉
= 〈k〉, (34)

〈m(m − 1)〉

〈m〉
= 〈m〉. (35)

To simplify the model, we set the average hyperdegree is
〈k〉 =

〈
ki

〉
=

〈
ko

〉
and the average hyperedge cardinality 〈m〉 = 〈mi〉

= 〈mo〉. The average degree of the initial network is defined as kavg,
and

〈
kavg

〉
can be represented by 〈k〉 and 〈m〉 of Eqs. (34) and (35),

〈
kavg

〉
= 〈k〉〈m〉. (36)

Referring to the relation in Ref. 52, the percolation threshold of
a directed random network can be deduced as

pc =
1〈

kavg

〉 . (37)

After substituting the hyperdegree distribution and hyperedge
cardinality, we get

pc =
〈k〉

〈k(k − 1)〉

〈m〉

〈m(m − 1)〉
. (38)

In order to calculate the percolation threshold, Eqs. (20)
and (21) are derived as follows:

F
(
Ri, Si, p

)
= Ri − p

{
1 − G0

(
1 − ŝi, 1

)}
, (39)

F
(
Ro, So, p

)
= Ro − p

{
1 − G0

(
1, 1 − ŝo

)}
. (40)

Because we are picking the same in- and out-degree, including
the hyperdegree and the hyperedge cardinality. Here, we only dis-
cuss the case of the in-degree of the directed random higher-order
network, and the verification of the percolation threshold of the out-
degree is similar to that of the in-degree. Putting the formula of
1 − ŝi into Eq. (38), we get

F
(
Ri, Si, p

)
= Ri − p

{
1 − G0

(
Ĝ i

1 (1 − Si, 1) , 1
)}

. (41)

Through Eq. (41), the percolation threshold of the directed
higher-order network can be solved, and the calculation curve in
shown in Fig. 3. Insights that emphasize distinctive groupings and
unique functional contributions of network nodes have received pri-
ority in the majority of network science discoveries. Importantly,
the network of their interrelationships, generated by network edges,
determines and expresses these functional contributions.53 In order
to better understand the importance of different hyperedges in a
directed higher-order network, based on our directed higher-order

FIG. 3. Calculating the percolation threshold of the homogeneous directed higher-order network. The sizes of k and m for (a)–(f) correspond to those in Fig. 2. The black
line in the figure is F = Si . The curve F(Ri , Si , P) given by Eq. (40) is represented by different colors under different conditions, and the red intersection point represents the
critical point of the percolation of the network. Obviously, the line is tangent to the curve F when the probability of preserving the node p is such that the numerator is equal
to 1 and the denominator is equal to k ∗ m.
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FIG. 4. The three-dimensional graph of the percolation of the homogeneous directed higher-order network and the proportion of edges of different orders in the percolation
process of the network. (a)–(d) The three-dimensional graph corresponds to the percolation of the directed random higher-order network. The coordinates of the X axis
represent the hyperedge cardinality m of the network and the size of the hyperdegree k, and k and m are taken as [2, 3, 4, 5, 6]. The Y axis represents the probability of
retaining nodes in the network p, and the Z axis represents the probability of retaining nodes in the network Si and S. Since Si and So are equal in size, only Si is shown here
for brevity. (e) and (f) The contribution of higher-order edges and lower-order edges in the directed random higher-order network. The circle, triangle, pentagon, and hexagon
in the graph, respectively, represent the size of hyperedges of different orders. The vertical axis represents the proportion of the number of edges of this order based on the
size of the initial network.

network model, we study the contribution of each edge under rel-
ative initial GSCC. Without edges, a directed higher-order network
would be a set of nodes without interaction.

In the experiment shown in Fig. 4, we counted the number of
hyperedges of different orders in the strongly connected branches
and expressed it by the contribution of edges, that is, the proportion
of the number of hyperedges in the initial number of hyperedges
in the percolation process. It can be seen from the experiment that
the curve of edge contribution tends to be consistent with the curve
of percolation in experiment part A. In the real network, we can
use the experimental results to control the slump of the number of
hyperedges.

Based on our simulation results, it can be seen that panels (c)
and (f) in Fig. 4 represent the contribution of hyperedges in the
directed higher-order network. In the simulation results, we find
that the number of hyperedges is significantly larger than that of
low-order edges and that higher-order interactions play a more vital
part in the percolation of higher-order networks. In addition, we
also calculate the number of hyperedges of different orders in GSCC,
including 2-order edges, 3-order edges, and 4-order edges. When

the node retention probability p is decreasing, and the removal
probability 1 − p increases, the size of the network decreases gradu-
ally, and the number of hyperedges decreases continuously.

B. Heterogeneous directed higher-order networks

In addition to the homogeneous higher-order networks model
that conforms to the Poisson degree distribution, we also con-
struct heterogeneous directed higher-order networks that conform
to the power-law degree distribution to represent the different
higher-order interactions in complex networks.

First of all, we introduce in detail the construction method of
a directed higher-order network conforming to a power-law distri-
bution. By generating a directed scale-free directed network with a
given in- and out-degree k1,51

k1 = 2m + 2k2

(
1 −

2m

N

)
. (42)
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The degree distribution of the SF network follows the power-law
distribution P(k),

P(k) =
(k + 1)1−λ − k1−λ

(kM + 1)1−λ − k1−λ
m

(43)

k, kM, and km are, respectively, the degree, maximum degree, and
minimum degree of the network. For simplicity, we use a directed
scale-free network with the same in- and out-degree. Then, we build
our directed higher-order network model by adding a directed tri-
angle conforming to the Poisson degree distribution k2. pt satisfies
the following formula:

pt =
2k2

(N − 1)(N − 2)
. (44)

Through the power-law distribution formula of Eq. (40), we
give the formula of the directed higher-order network model con-
forming to the power-law distribution,

G0(x, y) =

kM∑

km

(k + 1)1−λ − k1−λ

(
kM + 1

)1−λ
− k1−λ

m

xkiyko . (45)

The generating function of the hyperedge cardinality of a
network,

Ĝ0(x, y) =

kM∑

km

(k + 1)1−λ − k1−λ

(
kM + 1

)1−λ
− k1−λ

m

xmiymo . (46)

For ease of calculation, we set the in-and out-hyperdegree
of the network to be equal the in-and out-hyperedge cardinality.
By Eqs. (40)–(42), we can construct directed random higher-order
networks that conform to power-law distributions of particular k
and m.

Combined with the definition of a random higher-order net-
work and Eqs. (40)–(44), we can also calculate the percolation
threshold of directed higher-order network in accordance with
power-law distribution,

pc =
〈k〉

〈k(k − 1)〉

〈m〉

〈m(m − 1)〉
. (47)

In the simulation experiment shown in Fig. 5, we found that
based on SF network build directed higher-order network simu-
lation and simulation is a certain distance, but the trend of each
connected component of directed higher-order network and gives
the theoretical solution of highly consistent, we by setting different
k and m size, found that part of the simulation and the theoretical
solution is the same.

In the complex network system, the phase transition and crit-
ical phenomena are for the infinite system, but the numerical sim-
ulation and the simulation experiment operate on the finite system.
By setting the exponential coordinates of the Y axis and expanding
the number of networks exponentially, we find that by 2 to the 13th
power, the simulation results of the strongly connected branches of
the directed higher-order networks of SF networks conform to the
power-law distribution tend to the theoretical solution. Therefore,

FIG. 5. Percolation on the heterogeneous directed SF higher-order network. Under different conditions: (a)–(f) k ∈ {2, 3, 4},m ∈ {2, 3, 4}. The in- and out-hyperdegree and
hyperedge cardinality power exponent λ to be 2.5. The percolation simulation of the directed higher-order network is consistent with the simulation.
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FIG. 6. The results of repeated experiments by modifying the scale of the network. The ordinate is different in connected components: (a) Si , (b) So, and (c) S. In the
experiment, as the network grows exponentially in size, the results of percolation simulation tend to be the theoretical solution. Compared with Fig. 5, coordinate log
processing is performed on the vertical coordinate of the experiment to make it easier to find the experimental results.

through several experiments, the number of network nodes is
changed by logarithmic growth. In addition, setting the network
k = m = 3, we find that under the increasing number of network
nodes, the percolation simulation results are more consistent with
the theoretical solution in Fig. 6. In a first-order phase transition, the
system transitions from one phase state to another at the phase tran-
sition point, and this transition occurs instantaneously. However,
in the second-order phase transition, the intrinsic properties of the
higher-order network show a trend of continuous change with the
change of parameters, rather than sudden change. Therefore, from
the process of percolation, we can find that the percolation phase
transition of higher-order directed network is second-order phase
transition.

C. Real-world directed higher-order networks

Directed networks are widely used in higher-order real net-
works, including social networks and biological networks. Here are
two real network datasets applied in our experiment:54

Friendship networks (high school):55 This dataset represents
the directed network of reported possibilities. The node is a high
school student. The authors used data collected at a high school in
France, measured by parallel methods of face-to-face contact, wear-
able sensors, and contact diaries. A network of close contact between
students is created using wearable sensors.

Neuronal networks:29 This dataset calculates the topolog-
ical properties of neuronal networks, such as degree distribu-
tions, synaptic multiplicity, and small-world properties. Nodes are

different neurons. Using linear systems theory, the authors investi-
gated how brain activity spreads in response to sensory or artificial
stimuli and discovered a number of patterns of activity that might
work as the behavioral substrates mentioned previously. Analyzed is
the relationship between the chemical synaptic network and the gap
junction.

To enhance the efficiency of the experiment, Table I’s listing
of seven parameters for the artificial network experiment. In each
real-world dataset, face-to-face interactions were measured at a time
resolution of 20 s. First, we create a weighted network based on
the data, where the weights correspond to how many times a pair
of nodes interacted across the total time range. Then, we remove
any link with a weight less than a given threshold ζ and set the
weight of the retained link to 1 to generate an unweighted network.
The threshold ζ is a threshold to filter out certain connections with
low interaction frequency. Finally, divide the data up into multiple
time-windowed pieces and record all 2-hyperlinks or higher-order
edges.

Specifically, if three nodes communicate with one another for
a brief length of time, they are considered to form a three-body
link. The frequency of 2-hyperlink in each segment is recorded.
Through the generated directed higher-order network, we convert
it into a factor graph and percolate the network of the factor graph
to remove edges in the network. We count the number of higher-
order edges in the network, including ordinary edges, 2-hyperlinks,
and higher-order edges. We transform the hyperedges in the higher-
order through Fig. 1(b) to obtain the real network with different
sizes of hyperedges, as shown in Figs. 7(a) and 7(c).

TABLE I. The actual parameters in the real network, including the number of nodes N, the number of edges E, the average size of hyperdegree 〈k〉 and hyperedge cardinality

〈m〉, the maximum in- and out-hyperdegree k
max
in

k
max
out

, and the maximum hyperedge cardinality mmax. {E1, E2, E3, E4, E5} represents hyperedges of different sizes of the

initial network.

Dataset N E 〈k〉 〈m〉 k
max
in k

max
out mmax E1 E2 E3 E4 E5

Friendship 134 668 2.49 9.97 16 15 27 2008 15 26 29 14
C-elegans 279 2194 3.87 15.43 48 53 97 2010 48 44 75 73
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FIG. 7. Percolation on the social friendship networks and the biological neural networks. Panels (a) and (c) are factor graphs transformed from real networks, representing
friendship networks and neuron networks, respectively. Blue lines in the figure represent edges in factor graphs, while triangles, squares, and pentagons represent hyperedges
or factor nodes in factor graphs. Panels (b) and (d) in the figure is the percolation results and corresponding theoretical solutions. The corresponding theoretical parameters
are shown in Table I, and the ordinate coordinates correspond to the GIN, GOUT, and GSCC sizes of the network, respectively.

With the decrease of the probability of retaining nodes in the
factor graph, we find that the size of the GSCC in the real directed
higher-order network gradually decreases, and a phase transition
occurs at the percolation threshold point. As can be seen from Fig. 7,
the percolation situation of our model on the real network is consis-
tent with the theoretical solution. Similar phenomena are found in
real-world networks as in model networks.

V. CONCLUSION

The significant contribution of this paper is that it has provided
a theoretical framework of percolation for the study of higher-order
networks. This framework has been used to study the robustness of
homogeneous and heterogeneous directed higher-order networks.
We have revealed the size variation of GIN, GOUT, and GSCC dur-
ing percolation in a directed higher-order network and the size of
the percolation threshold during the percolation phase transition.
In addition, the network’s percolation threshold has been calcu-
lated using the generating function and theoretical formulas, and the
calculated results correspond to the Monte-Carlo simulation results.

In the experiment, we first constructed two different directed
higher-order networks: homogeneous and heterogeneous directed
higher-order networks and revealed the percolation process of the

GIN, the GOUT, and the GSCC in the directed higher-order net-
work by changing the network’s hyperdegree k and hyperedge car-
dinality m. Increasing the hyperdegree distribution of heterogeneity
or the hyperedge cardinality distribution of heterogeneity higher-
order networks will make the network more vulnerable, weakening
the higher-order network’s robustness. Interestingly, in the homoge-
neous directed network, we calculated the sizes of the higher-order
edges and low-order edges during the percolation process and found
that their trends were consistent with the trend of percolation.
Moreover, we showed the percolation process of the homogeneous
directed higher-order network through the three-dimensional dia-
gram. Finally, by visualizing social networks and biological neural
networks in the real world, it is found that the simulated results
correspond to the theoretical results again, further verifying our
conclusions.

The results show that the robustness of directed higher-order
networks at different scales can be effectively studied in our model.
For example, when directed synaptic nodes in a network of biologi-
cal neurons gradually fail, the above experimental results can explain
how their function is affected, and the number of nodes that fail
before the neural network breaks down. Our model captures the
significant effects of multi-node interactions in the directed higher-
order networks, and in future work, our model may be extended
from spreading processes to other dynamical systems.
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