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A B S T R A C T

In the real world, directed networks are not just constructed as pairs of directed interactions, but also occur
in groups of three or more nodes that form the higher-order structure of the network. From social networks to
biological networks, there is growing evidence that real-world systems connect the functional relationships of
multiple systems through interdependence. To understand the robustness of interdependent directed higher-
order networks, we propose a new theoretical framework to model and analyze the robustness of such networks
under random failures by percolation theory. We find that adding higher-order edges makes the network more
vulnerable which quantifies and compares by two criteria: the size of the giant connected components and the
percolation threshold. Increasing the hyperdegree distribution of heterogeneity or the hyperedge cardinality
distribution of heterogeneity in interdependent directed higher-order networks will also make the network
more vulnerable. Interestingly, the phase transition type changes from continuous to discontinuous with the
increase of coupling strength, and partially interdependent directed higher-order networks exist hybrid phase
transition. Moreover, by applying our theoretical analysis to real interdependent directed higher-order networks
further validated our conclusion, it has implications for the design of flexible complex systems.
1. Introduction

In the real world, complex systems can be modeled as complex
networks, where nodes represent individuals or components and edges
represent interactions between them, such as biological systems, social
systems, and infrastructure [1–5]. However, directed pairwise interac-
tions do not exist only between nodes, but also occur in groups of three
or more nodes, which are considered directed higher-order structures in
the network [6–9]. For example, (Bio)chemical reactions are a typical
example of higher-order directed processes, as, though some reactions
can be reversible, there is often a privileged direction due to ther-
modynamics [10]. In addition, the ecology of microbial communities
also have higher-order directional relationships, such as directional
interactions between two species that affect another species [11,12].

As a vital method to quantify the damage of a real system under
random attacks [13,14] or targeted attacks [15], the percolation theory
can be utilized to investigate network connectivity and the robustness
of directed networks [3,16], such as the bond percolation [17], site
percolation [18], and k-core percolation [19,20]. For the bond (site)
percolation, each edge (node) is occupied with probability 𝑝. With the
increase of the occupation probability 𝑝, the network’s giant strongly
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connected component (GSCC) gradually increases. When the GSCC
changes from zero to non-zero, the occupation probability 𝑝𝑐 is called
the percolation threshold. These properties can be characterized by
using percolation theory to analyze [21,22].

Research on higher-order networks has aroused the interest of many
scholars [23,24]. Higher-order networks have been considered in evo-
lutionary dynamics [25], in the evolution of honesty [26], and in many
dynamical processes, such as synchronization [27,28] and all these
phenomena are strongly dependent on robustness against cascading
failures.

Understanding the robustness and resilience of the interdependent
networks is crucial for designing and managing reliable and efficient
systems. Such higher-order networks can capture the complexity and
heterogeneity of real-world systems more accurately compared to tradi-
tional networks [29]. Peng 𝑒𝑡 𝑎𝑙. [30] constructed a theoretical model of
a two-layer partial dependence network with simplicial complexes and
introduce percolation theory to study the robustness of the network and
find the density of the triangle and the dependent strength between the
two networks affect the percolation behaviors of the network together.
Bonamassa 𝑒𝑡 𝑎𝑙. [31] discovered an isomorphism between the ground
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Fig. 1. Schematic representation of a cascading failure process on interdependent directed higher-order networks. Panels (a)–(d): Both network 𝐴 and network 𝐵 have 11 nodes,
where 𝑞𝐴 = 3/11 node depends on nodes in network 𝐵 and 𝑞𝐵 = 4/11 node depends on nodes in network 𝐴. In the initial cascading failure, the nodes in red represent the nodes
removed from the network, from the initial step 0 to step 3, showing the process of partially interdependent cascading failures.
state of random multispin models and interdependent percolation on
randomly coupled networks. Because networks in the real world are
not isolated, multi-layer networks need to be built to understand the
robustness of interdependent directed higher-order networks [32–35].

This article aims to study interdependent directed higher-order net-
works, which are networks where nodes are connected through directed
hyperedges that capture higher-order interactions. These hyperedges
can represent complex dependencies or interactions among nodes, such
as group interactions [36,37], information flow in social networks [38,
39], or regulatory interactions in biological networks [40–42]. The
directed nature of the hyperedges introduces additional complexity and
dynamics to the network, as the interactions among nodes may have
directional dependencies. Adding higher-order directed edges enhances
the robustness of the complex system and increasing the hyperdegree
distribution of heterogeneity or the hyperedge cardinality distribu-
tion of heterogeneity in higher-order networks will make the network
weakening the higher-order network’s robustness [43]. In this paper,
we explore the cascade failure process of interdependent networks
on the basis of single-layer networks, and find different phenomena
of percolation phase transition. Besides, breakdown of interdependent
directed networks has been studied, and apply it to real-world inter-
national trade networks, and Liu 𝑒𝑡 𝑎𝑙. [44] found that the robustness
of interdependent heterogeneous networks increases, whereas that of
interdependent homogeneous networks with strong coupling strengths
decreases with in-degree and out-degree correlations. Klosik et al. [45]
designed a network of interdependent directed biomolecules which
called the interdependent network of gene regulation and metabolism.
The Network of gene regulation consists of 24,150 directed edges, and
this network is interdependent on a protein network that can be repre-
sented by a higher-order network. By constructing a percolation model,
2

they found that interdependent systems are sensitive to perturbations
in gene regulation and protein levels, but robust to metabolic changes.

In this paper, we propose a new theoretical framework to model
and analyze the robustness of interdependent directed higher-order net-
works using generating functions and percolation theory. We study the
robustness of interdependent directed higher-order networks by quan-
tifying two criteria: the size of the giant connected components(GIN,
GOUT and GSCC) and the percolation threshold. We generate fully
dependent and partially dependent directed higher-order networks by
giving the hyperdegree 𝑘 and the hyperedge cardinality 𝑚. The size
of the giant connected components of each layer and the percola-
tion threshold are calculated when the cascade failure reaches steady
state and verified by numerical simulation. In summary, the main
contributions of this paper are as follows.

• Proposing an interdependent directed higher-order networks the-
oretical framework to study the robustness of higher-order net-
works. Mathematical formulas deduce the percolation threshold
and the size of different GCCs. The results of simulations and
theoretical simulations correspond to the artificial network we
constructed.

• The effects of hyperdegree and hyperedge cardinality distribution
heterogeneity on interdependent directed higher-order networks
are revealed. With the increase of network hyperdegree and hy-
peredge cardinality, the heterogeneity of hyperdegree distribution
increases and the percolation threshold decreases. The cascade
failure process of interdependent directed higher-order networks
is analyzed. In addition, the phase transition type changes from
continuous phase transition to hybrid phase transition and then
to discontinuous phase transition with the increase of coupling
strength.



Physica D: Nonlinear Phenomena 462 (2024) 134126D. Zhao et al.

i
p
d
S
f
c
a

2

i
g
d
d

n
o

⟨

d
o

𝐺

w
o
a
c

o
𝐺
a

• Our theory is validated on both artificial and real-world net-
works. We built social conference networks and biological neural
networks, and combined real and artificial networks to simulate
the percolation process of interdependent directed higher-order
networks in the real world.

The work is organized as follows. In Section 2, we introduce a
nterdependent directed higher-order network model. In Section 3, we
ropose a framework for analyzing the robustness of interdependent
irected higher-order networks and conduct a theoretical analysis. In
ection 4, we present our process analysis of percolation and cascade
ailure, and the calculation of percolation threshold, followed by dis-
ussions in Section 5. Finally, we conclude the paper in Section 6 with
summary of our findings and directions for future research.

. Model

Consider the interdependent directed higher-order networks 𝐴 and
network 𝐵 in a system with the same number of network nodes. 𝑞𝐴
represents the probability that network 𝐴 is randomly connected to
network 𝐵; 𝑞𝐵 represents the probability that network 𝐵 is randomly
connected to network 𝐴. The interdependence between the two layers is
defined by the links between the layers, through which full and partial
dependencies are discussed. As in our previous work, we construct a
higher-order directed network with a specific hyperdegree size 𝑘 and
hyperedge cardinality 𝑚.

After constructing the two-layer interdependent directed higher-
order network, we set the initial removal probability of the network
as 𝑝, that is, the initial retention probability of the network as 1 − 𝑝.
With the failure of the nodes in network 𝐴, the nodes in network 𝐵 are
affected, and the cascading failures continue to iterate, and the number
of network functional nodes continues to decrease. By converting the
network into a factor graph, when the size of network 𝐴 and network
𝐵 is equal, the process of cascade failure ends, and the process reaches
a steady state. Then we calculate the GCCs of the network, to study the
robustness of the interdependent directed higher-order network. The
strongly connected component in a directed network, where a vertex
in GSCC can reach any other vertex in GSCC. The Giant In-component
(GIN) and Giant Out-component (GOUT) is the nodes of GSCC plus the
nodes leading to/from GSCC. For convenience, we use 𝑆 to represent
GSCC and 𝑆𝑖/𝑆𝑜 to represent GIN/GOUT The model is illustrated in
Fig. 1.

3. Theoretical analysis

Before introducing higher-order directed networks, we need to
know about hyperlink. Various orders of interactions, such as 1-hype-
rlink, 2-hyperlink, etc. The 2-hyperlink is an interaction among three
nodes on hypergraphs. Our model represents directionality in the
network by transforming the generated higher-order network into a
directed factor graph.

Without losing generality, we define a directed higher-order net-
work through mathematical language. In Alain Bretto’s higher-order
networks review, a directed higher-order network is defined as an
ordered pair: �⃗� = 𝑉 ; �⃗� = (⃖⃖⃗𝑒𝑖 ∶ 𝑖 ∈ 𝐼), where 𝑉 is a finite set of vertices
and �⃗� is a set of hyperedge with finite index set 𝐼 . Each hyperedge ⃖⃖⃗𝑒𝑖
s an ordered pair. Similar to the definition of a higher-order network
iven in a directed higher-order network, hyperedges represent the
irected interaction of two vertices with directions. According to the
efinition of the directed higher-order network 𝐺𝐷𝐻 (𝑉 ,𝑈,𝐸), which is

essentially a bipartite graph, after all, 𝑉 is the set of nodes, 𝑈 represents
a set of factor nodes, 𝐸 of the edges between the nodes and the factor
nodes, and each interaction connects a node one-way to a factor node.
The factor graph is related to the directed higher-order network by
simply mapping. In the directed higher-order network, we introduce the
3

concepts of 𝑘𝑖 and 𝑘𝑜 to represent the size of the in- and out-degree of 𝐺
the higher-order network, referred to as the hyperdegree, which means
the number of nodes connected to factor nodes. The number of factor
nodes connected to nodes is represented by 𝑚𝑖 and 𝑚𝑜, referred to as
hyperedge cardinality.

The following is our theoretical derivation from the generating
function. The definition of the generating function of the in- and
out-hyperdegrees distribution of the initial network node is as follows,

𝐺𝐴0 (𝑥, 𝑦) =
∑

𝑘𝑖𝑘𝑜

𝑃
(

𝑘𝑖, 𝑘𝑜
)

𝑥𝑘𝑖𝑦𝑘𝑜 , (1)

𝐺𝐵0 (𝑥, 𝑦) =
∑

𝑘𝑖𝑘𝑜

𝑃
(

𝑘𝑖, 𝑘𝑜
)

𝑥𝑘𝑖𝑦𝑘𝑜 , (2)

where 𝑃 (𝑘𝑖, 𝑘𝑜) is the joint degree distribution of a directed higher-order
etwork, 𝑥 and 𝑦 denote any variable. Since the sum of the in- and
ut-hyperdegrees is zero, the 𝑃 (𝑘𝑖, 𝑘𝑜) must satisfy the constraint
∑

𝑘𝑖𝑘𝑜

𝑃 (𝑘𝑖, 𝑘𝑜)(𝑘𝑖 − 𝑘𝑜) = 0, (3)

For the symmetric case with coupling strengths 𝑞𝐴 = 𝑞𝐵 = 𝑞,
nonremoved nodes after initial failure 𝑝1 = 𝑝2 = 𝑝, and degree
distributions 𝑃𝐴

(

𝑘i, 𝑘o
)

= 𝑃𝐵
(

𝑘i, 𝑘o
)

= 𝑃
(

𝑘i, 𝑘o
)

. With 𝐺0, we can
define the generating functions 𝐺𝑖0 denotes the number of outward
edges that leave a randomly chosen vertex the number of vertices
leaving by following a randomly chosen edge, and 𝐺𝑖1 denotes the
number leaving the vertex reached by following a randomly chosen
edge [46],

𝐺𝐴1 (𝑥, 1) =
𝜕𝑦𝐺𝐴(𝑥, 𝑦)

|

|

|𝑦=1

𝜕𝑦𝐺𝐴(1, 1)
, (4)

𝐺𝐴1 (1, 𝑦) =
𝜕𝑥𝐺𝐴(𝑥, 𝑦)||𝑥=1
𝜕𝑥𝐺𝐴(1, 1)

. (5)

Similarly, the generating functions of the branching process of
network B,

𝐺𝐵1 (𝑥, 1) =
𝜕𝑦𝐺𝐵(𝑥, 𝑦)

|

|

|𝑦=1

𝜕𝑦𝐺𝐵(1, 1)
, (6)

𝐺𝐵1 (1, 𝑦) =
𝜕𝑥𝐺𝐵(𝑥, 𝑦)||𝑥=1
𝜕𝑥𝐺𝐵(1, 1)

. (7)

We define the generating functions 𝐺𝑜0 and 𝐺𝑜1 for the number
arriving at such a vertex,

𝐺𝑜0(𝑥) = 𝐺0(𝑥, 1), (8)

𝐺𝑜1(𝑥) = 1
𝑘𝑜

𝜕𝐺0(𝑥, 𝑦)
𝜕𝑦

|

|

|

|𝑦=1
. (9)

Average hyperdegree of a directed higher-order network,

𝑘⟩ =
∑

𝑘𝑖

𝑃 (𝑘𝑖, 𝑘𝑜)𝑘𝑖 =
∑

𝑘𝑜

𝑃 (𝑘𝑖, 𝑘𝑜)𝑘𝑜. (10)

Based on the definition of hyperedges, the generating function
efinition of the cardinality distribution of the in- and out-hyperedges
f the initial network node is as follows:

�̂�𝐴0 (𝑥, 𝑦) =
∑

𝑚𝑖𝑚𝑜

𝑃
(

𝑚𝑖, 𝑚𝑜
)

𝑥𝑚𝑖𝑦𝑚𝑜 , (11)

̂𝐵
0 (𝑥, 𝑦) =

∑

𝑚𝑖𝑚𝑜

𝑃
(

𝑚𝑖, 𝑚𝑜
)

𝑥𝑚𝑖𝑦𝑚𝑜 , (12)

here 𝑃 (𝑚𝑖, 𝑚𝑜) is the joint degree distribution of a directed higher-
rder network, 𝑥 and 𝑦 denote any variable. Since the sum of the in-
nd out-hyperedge cardinality is zero, the 𝑃 (𝑚𝑖, 𝑚𝑜) must satisfy the
onstraint

With �̂�0, we can define the generating functions 𝐺𝑖0 for the number
f outward points leaving a randomly chosen factor of the node, and
̂𝑖
1 for the number of points leaving a factor of the node by following
randomly chosen edge,

̂ 𝑖 ̂

0(𝑦) = 𝐺0(1, 𝑦), (13)
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�̂�𝑖1(𝑦) = 1
𝑚𝑖

𝜕�̂�0(𝑥, 𝑦)
𝜕𝑥

|

|

|

|

|𝑥=1
. (14)

In the same way, we can define the number of generating functions
̂𝑜
0 and 𝐺𝑜1 for the number arriving at such a vertex,

̂ 𝑜
0(𝑥) = �̂�0(𝑥, 1), (15)

̂ 𝑜
1(𝑥) = 1

𝑚𝑜

𝜕�̂�0(𝑥, 𝑦)
𝜕𝑦

|

|

|

|

|𝑦=1
. (16)

The average cardinality of the directed higher-order network,

⟨𝑚⟩ =
∑

𝑚𝑖

𝑃
(

𝑚𝑖, 𝑚𝑜
)

𝑚𝑖 =
∑

𝑚𝑜

𝑃
(

𝑚𝑖, 𝑚𝑜
)

𝑚𝑜. (17)

With the idea of the factor graph, given the hyperdegree size 𝑘𝑖 and
𝑜, and the hyperedge cardinality 𝑚𝑖 and 𝑚𝑜, we can get four parameters
o quantify the network. To simplify the network, we set 𝑘 = 𝑘𝑖 = 𝑘𝑜
nd 𝑚 = 𝑚𝑖 = 𝑚𝑜. Given that the initial number of nodes in the network
s 𝑁 , we calculate the number of factor nodes in the network due to the
elationship between 𝑘 and 𝑚 in the factor graph: 𝑁𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑁 ∗ 𝑘∕𝑚.
ith the given parameters above, we can construct the directed random

igher-order network conforming to the hyperdegree size 𝑘 and the
yperedge cardinality 𝑚.

As shown in Fig. 1(a), we will have a model to generate the higher-
rder network divided into two steps. In the first step, a specific
egree sequence was generated for the random network through the
egree distribution function. The second step: is through the method
f random connections, combined with the introduction of the model
reviously defined by the concept of a random triangle, to gener-
te the different directed random triangles and generate the directed
igher-order network. [47].

In our directed higher-order network model, the network structure
s random and sparse, so for a large enough network, it can be consid-
red as a tree. That is, there is no circle in the network. The percolation
roblem of a directed higher-order network can be solved accurately
y generating functions. To represent the initial degree distribution of
higher-order network, we define the hyperdegree distribution 𝑃 (𝑘)

nd the hyperedge cardinality distribution 𝑃 (𝑚) correspond to the
egree distributions of the nodes and factor nodes in the factor graph,
espectively [48].

As a random higher-order network map’s component graph is a
ocal tree, we take into account its corresponding factor graphs to
epict percolation on directed higher-order networks. We can use a
elf-consistent equation to represent the probability of reaching a factor
ode belonging to the GCC from a node along with the edge,

̂ =
∑

𝑚

𝑚
⟨𝑚⟩

𝑃 (𝑚)
[

1 − (1 − 𝑆)𝑚−1
]

. (18)

In Eq. (18), 𝑚−1 means that the factor node removes the edge from
hich it originates, (1 − 𝑆)𝑚−1 represents the probability that a factor

node cannot reach a node from the GCC, take the sum and average
over all the probabilities, we can get the �̂�. In the same way, (1−𝑆)𝑘−1
epresents the probability that a normal node cannot reach a factor
ode from the GCC, 𝑆 is the probability that a node from a node belongs
o a GCC,

= 𝑝
∑

𝑘

𝑘
⟨𝑘⟩

𝑃 (𝑘)
[

1 − (1 − �̂�)𝑘−1
]

. (19)

The order parameters of the percolation process, which are given
by the probability 𝑅 of finding a node in the GCC and the probability
�̂� of finding a hyperedge in the GCC,

𝑅 = 1 −
∑

𝑘
𝑃 (𝑘)(1 − �̂�)𝑘, (20)

̂ = 1 −
∑

𝑚
𝑃 (𝑚)(1 − 𝑆)𝑚. (21)

Eqs. (17)–(21) can be used to investigate the fundamental aspects
f percolation and determine how robust higher-order networks are.
4

𝐵

n the directed higher-order networks, we consider the probability of
inding a node in a GCC as the order parameter 𝑅 to characterize the
ercolation problem. Through the definition of the giant in-component
nd the giant out-component, we give the formula of 𝑅𝑖 and 𝑅𝑜,

𝑅𝑖 = 𝑝

{

1 −
∑

𝑖𝑜
𝑃𝑖(𝑖, 𝑜)(1 − �̂�)𝑖

}

, (22)

𝑜 = 𝑝

{

1 −
∑

𝑖𝑜
𝑃𝑜(𝑖, 𝑜)(1 − �̂�)𝑜

}

. (23)

sing the generating function 𝐺0(𝑥, 𝑦), the above equation can be
implified as

𝑅𝑖 = 𝑝
{

1 − 𝐺0
(

1 − �̂�𝑖, 1
)}

, (24)

𝑜 = 𝑝
{

1 − 𝐺0
(

1, 1 − �̂�𝑜
)}

. (25)

q. (17) and Eq. (23) give the relationship between the directed higher-
rder network 𝑅𝑖 and 𝑆𝑖, 𝑅𝑜 and 𝑆𝑜, but based on this formula, 𝑆 or
cannot be solved. Therefore, we use Eq. (16) in Peng et al. [15], to

erive the following formula,

̂ = 1 − �̂�1(1 − 𝑆), (26)
= 𝑝

(

1 −𝐻1(1 − �̂�)
)

. (27)

The generating function in the undirected random higher-order net-
work represented by 𝐻 in the formula.

Since directed higher-order networks can also be mapped to factor
graphs, we give formulas for 𝑆 and �̂�,

�̂�𝑖 =
∑

𝑚𝑖𝑚𝑜

𝑚
⟨𝑚⟩

𝑃 (𝑚𝑖, 𝑚𝑜)
[

1 − (1 − �̂�𝑖)𝑚−1
]

, (28)

𝑖 = 𝑝
∑

𝑘𝑖𝑘𝑜

𝑘
⟨𝑘⟩

𝑃 (𝑘𝑖, 𝑘𝑜)
[

1 −
(

1 − �̂�𝑖
)𝑘−1] . (29)

Similarly, we derive the formula for 𝑆𝑜 and 𝑆𝑜,

𝑆𝑜 =
∑

𝑚𝑖𝑚𝑜

𝑚
⟨𝑚⟩

𝑃 (𝑚𝑖, 𝑚𝑜)
[

1 − (1 − �̂�𝑖)𝑚−1
]

, (30)

𝑜 = 𝑝
∑

𝑘𝑖𝑘𝑜

𝑘
⟨𝑘⟩

𝑃 (𝑘𝑖, 𝑘𝑜)
[

1 −
(

1 − �̂�𝑖
)𝑘−1] . (31)

o simplify the above formula,

̂𝑑 = 1 −
(

1 − �̂�1(𝑆𝑑 , 1)
)

, (32)

𝑑 = 1 − 𝑝(1 − 𝐺1(1, �̂�𝑑 )). (33)

e calculate the size of the GSCC from the original generating function,

=
∑

𝑘i ,𝑘o

𝑃
(

𝑘i, 𝑘o
) (

1 − 𝑥𝑘i𝑐
)

(

1 − 𝑦𝑘o𝑐
)

= 1 − 𝐺
(

𝑥𝑐 , 1
)

− 𝐺
(

1, 𝑦𝑐
)

+ 𝐺
(

𝑥𝑐 , 𝑦𝑐
)

.

(34)

Then convert the above formula,

𝐴
(𝑝) = 1 − 𝐺𝐴

0

(

�̂�
𝑑
, 1
)

, (35)

𝐵
(𝑝) = 1 − 𝐺𝐵0

(

1, �̂�
𝑑

)

. (36)

he size of 𝑔
𝐴
(𝑝) and 𝑔

𝐵
(𝑝) can be calculated from this formula (see

ig. 4).
In Buldyrev’s two-layer network, we also randomly delete part of

he nodes and part of the 𝐵 nodes. The network is segmented into each
trongly connected component, where each pair of nodes can reach
ach other through a directed path. Only the GSCC is considered a po-
ential functional node. Therefore, after the initial node is removed, the
ize of the function 𝐴 node and function 𝐵 node (GSCC), respectively,
1 = 𝑝1𝑔𝐴(𝑝1) and 𝜙1 = 𝑝2𝑔𝐵(𝑝2). And the formula 𝑔

𝐴
(𝑝) and 𝑔

𝐵
(𝑝)

alculates the size of GSCC in network isolation and isolated network
respectively, 𝑥 and 𝑦 denote any variable.
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Fig. 2. Percolation on the fully interdependent directed higher-order networks. Experiment under different conditions: Panel (a)–(f) 𝑘 ∈ {2, 3, 4}, 𝑚 ∈ {2, 3, 4}. With the increase
f node removal probability 1 − 𝑝, the process of network disintegration is expressed by the size change of GCCs and the change of percolation threshold in the network. The
ercolation simulation of the directed higher-order network is consistent with the theory.
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Here we define 𝑓𝐴(𝑝) and 𝑓𝐵(𝑝),

𝐴(𝑝) = 𝐺𝐴0
(

�̂�𝑑 , 1
)

, (37)

𝐵(𝑝) = 𝐺𝐵0
(

1, �̂�𝑑
)

. (38)

t the end of the cascade failure, we arrive at two symmetric equations
f a system with two unknowns,

= 𝑝𝑔𝑎(𝑦), (39)
𝑦 = 𝑝𝑔𝑏(𝑥). (40)

his system of equations has a trivial solution 𝑥 = 0, 𝑦 = 0 correspond-
ng to a giant component of size 𝑝 = 0. If 𝑝 is large enough there

exists a different solution, given the non-zero size of the common giant
components. We can easily exclude from these equations and get an
equation 𝑦,

𝑥 = 𝑝𝑔𝑎(𝑝𝑔𝑏(𝑥)). (41)

We can use this formula to figure out the magnitude of 𝑥. On account
of 𝑅 = 𝑥 ∗ 𝑔𝑏(𝑥), derive the sizes of 𝑅𝑖 and 𝑅𝑜.
𝐴
i = 𝑅𝐴𝑜 = 𝑥 ∗

[

1 − 𝐺𝐴0
(

1, �̂�𝑑
)]

, (42)
𝐵
i = 𝑅𝐵𝑜 = 𝑥 ∗

[

1 − 𝐺𝐵0
(

1, �̂�𝑑
)]

. (43)

ince in Eq. (32) before, we calculate the �̂�𝑑 , from this self-consistent
quation the magnitude of �̂�𝑑 can be derived, and thus the magnitude
f 𝑅𝑖 and 𝑅𝑜 can be calculated (see Fig. 2).

. Experimental results and analysis

We use artificially constructed networks to study the robustness of
ully interdependent and partially interdependent directed higher-order
etworks. We measure the robustness of the network by calculating the
IN/GOUT, GSCC and the percolation threshold.

.1. Fully dependent higher-order directed network

We perform Monte-Carlo simulations of the generated networks by
onstructing homogeneous directed higher-order networks. Different
ercolation experimental results are obtained by changing the network
ith different hyperdegree 𝑘 and hyperedge cardinality 𝑚. It can be
5

p

een that the percolation threshold tends to decrease as the product of
yperdegree 𝑘 and hyperedge cardinality 𝑚 increases. The network’s
hree GCCs undergo phase transitions simultaneously, and the sizes
f the GIN and the GOUT are larger than the GSCC after the phase
ransition point.

The critical points of 𝑆𝑖 and 𝑆𝑜 of the directed higher-order network
re the same as those of the tree random directed network and have
othing to do with the degree distribution and the correlation between
he in-and out-degree. The GIN and the GOUT appear together with the
SCC, and it is impossible to emerge as one of them alone. Therefore,

he critical points of the GIN and the GOUT of the homogeneous
irected higher-order networks are the same, and the critical points of
he GSCC are the same, which is confirmed by the simulation results.

To simplify the model, we set the average hyperdegree is ⟨𝑘⟩ =
𝑘𝑖⟩ = ⟨𝑘𝑜⟩ and the average hyperedge cardinality ⟨𝑚⟩ = ⟨𝑚𝑖⟩ = ⟨𝑚𝑜⟩.

Insights that emphasize distinctive groupings and unique functional
ontributions of network nodes have received priority in the majority
f network science discoveries. Importantly, the network of their inter-
elationships, generated by network edges, determines and expresses
hese functional contributions [49]. In order to better understand the
mportance of different hyperedges in a directed higher-order net-
ork, based on our directed higher-order network model, we study

he contribution of each edge under relative initial GSCC. Without
dges, a directed higher-order network would be a set of nodes without
nteraction.

In the experiment shown in Fig. 3, we counted the number of
yperedges of different orders in the strongly connected components,
nd expressed it by the contribution of edges, that is, the proportion of
he number of hyperedges in the initial number of hyperedges in the
ercolation process. It can be seen from the experiment that the curve
f edge contribution tends to be consistent with the curve of percolation
n experiment part A. In the real network, we can use the experimental
esults to control the slump of the number of hyperedges.

Based on our simulation results, it can be seen that Panel (c)
nd (f) in Fig. 3 represent the contribution of hyperedges in the
irected higher-order network. In the simulation results, we find that
he number of hyperedges is significantly larger than that of low-order
dges and that higher-order interactions play a more vital part in the

ercolation of higher-order networks. In addition, we also calculate the
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Fig. 3. The three-dimensional diagram of the percolation of the fully interdependent directed higher-order networks and the contribution of higher-order edges and lower-order
edges in the directed random higher-order network. The three-dimensional graph (a),(b),(d),(e) corresponds to the percolation of the directed random higher-order network. The
coordinates of the 𝑋-axis represent the hyperedge cardinality 𝑚 of the network and the size of the hyperdegree 𝑘. The 𝑌 -axis represents the probability of retaining nodes in the
network 𝑝, and the 𝑍-axis represents the probability of retaining nodes in the network 𝑆𝑖 and 𝑆. Since 𝑆𝑖 and 𝑆𝑜 are equal in size, only 𝑆𝑖 is shown here for brevity. Panel (c),(f):
The circle, triangle, pentagon, and hexagon in the graph respectively represent the size of hyperedges of different orders. The vertical axis represents the proportion of the number
of edges of this order based on the size of the initial network.
Fig. 4. Schematic on a higher-order directed interdependent network and transform into a factor graph. The interdependencies between network A and network B are represented
y blue dashed lines. Panel (a) Higher-order network A and network B are completely interdependent through coupling. The elliptic nodes in the figure represent the nodes in the
igher-order network, and the blue graphs of different shapes represent the hyperedges of different orders. Yellow nodes represent the giant strongly connected component(GSCC)
f the network. Panel (b) Convert the higher-order directed network in Fig. 1.(a) into a factor graph, where the upper layer represents the nodes in the network, and the white
nd blue nodes in the lower layer represent the hyperedges of different sizes.
a
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umber of hyperedges of different orders in GSCC, including 2-order
dges, 3-order edges, and 4-order edges. When the node retention prob-
bility 𝑝 is decreasing, and the removal probability 1 − 𝑝 increases, the

size of the network decreases gradually, and the number of hyperedges
decreases continuously.

4.2. Partially dependent higher-order directed network

We present the solution for the final GSCC size step by step accord-
ing to the cascading process, as shown in Fig. 5.

Different from the fully dependent higher-order directed network,
the connection of the partially dependent higher-order directed net-
work is unidirectional and random. Here, we define A uniform 𝑞𝐴 to
represent the probability that network 𝐴 connects to network 𝐵. 𝑞𝐵
represents the probability that network 𝐵 is connected to network 𝐴. In
6

the initial partially interdependent network, we study the percolation
through the retention probability of 1 − 𝑝, and explore the robustness
of the higher-order directed network.

With the removal of nodes in network 𝐴, due to the existence
of interdependent edges between nodes, the interdependent edges of
broken nodes connected to network 𝐴, and the nodes in network 𝐵 are
lso affected, and the functional nodes fail. The feedback obtained in
his process is the first step of network cascade failure. Such steps are
terated continuously, and when network 𝐴 and network 𝐵 reach steady
tate, we can calculate the network’s GSCC,

𝑆𝐴 =

(

1 − 𝑧𝐴i
) (

1 − 𝐺𝐴0
(

𝑧𝐴i , 𝑧
𝐴
o
))

1 − 𝐺𝐴1
(

𝑧𝐴i , 1
) , (44)

𝑆𝐵 =

(

1 − 𝑧𝐵i
) (

1 − 𝐺𝐵0
(

𝑧𝐵i , 𝑧
𝐵
o
))

𝐵 ( 𝐵 ) , (45)

1 − 𝐺1 𝑧i , 1
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Fig. 5. Percolation on the partially interdependent directed higher-order networks and the dynamic process of cascading failure. Panel (a)–(c): Change 𝑞 ={0.4, 0.6, 0.8}, the
ercolation process of partially interdependent directed higher-order networks under different 𝑝 values. Panel (d)–(f): The red solid line is the analysis result of GSCC size of
etwork A at each stage of the cascade fault, and the blue line is the analysis result of GSCC size of network B, which is in good agreement with the simulation result expressed
y symbol (N = 104). In the simulation, we set the ⟨𝑘𝐴⟩ = {6, 7, 8}, ⟨𝑘𝐵⟩ = {6.5, 7.5, 8.5}, 𝑞𝐴 = 0.4, 𝑞𝐵 = 0.5, 𝑝1 = 0.5, 𝑝2 = 0.6.
here 𝑧𝐴𝑖 , 𝑧𝐵𝑖 , 𝑧𝐴𝑜 and 𝑧𝐵𝑜 are arbitrary complex variables. If we convert
he above formula, we get

1 − 𝑧𝐴i
1 − 𝐺𝐴1

(

𝑧𝐴i , 1
) = 𝑝1

(

1 − 𝑞𝐴
(

1 −
(

1 − 𝐺𝐵
(

𝑧𝐵i , 𝑧
𝐵
o
))

𝑝2
))

, (46)

1 − 𝑧𝐵i
1 − 𝐺𝐵1

(

𝑧𝐵i , 1
) = 𝑝2

(

1 − 𝑞𝐵
(

1 −
(

1 − 𝐺𝐴
(

𝑧𝐴i , 𝑧
𝐴
o
))

𝑝1
))

. (47)

We set 𝑞𝐴 = 𝑞𝐵 = 𝑞 and 𝑝1 = 𝑝2 = 𝑝 into the above formula, we
an calculate the network’s GSCC. When the joint degree distribution of
etwork A and B is the same, 𝑁 tends to infinity, 𝑆𝐴 = 𝑆𝐴′, 𝑆𝐵 = 𝑆𝐵 ′.

Through the above derivation,

𝑥𝐴 = 𝐺𝐴1
(

𝑝1𝑥𝐴 + 1 − 𝑝1, 1
)

, (48)

𝑦𝐴 = 𝐺𝐴1
(

1, 𝑝1𝑦𝐴 + 1 − 𝑝1
)

, (49)

𝑥𝐵 = 𝐺𝐵1
(

𝑝2𝑥𝐵 + 1 − 𝑝2, 1
)

, (50)

𝑦𝐵 = 𝐺𝐵1
(

1, 𝑝2𝑦𝐵 + 1 − 𝑝2
)

. (51)

The GSCC belonging to network A after removing 1 − 𝑝1 nodes,

𝑆𝐴
(

𝑝1
)

= 1 − 𝐺𝐴0
(

𝑝1𝑥𝐴 + 1 − 𝑝1, 1
)

, (52)

𝑆𝐵
(

𝑝1
)

= 1 − 𝐺𝐵0
(

𝑝1𝑥𝐵 + 1 − 𝑝1, 1
)

. (53)

At the end of the cascade failure, we calculate the size of the final
GSCC,

𝑆𝐴′ = 𝑝1
(

1 − 𝑞𝐴
(

1 − 𝑝𝐵
(

𝑆𝐵′
)

𝑝2
))

, (54)

𝑆𝐵′ = 𝑝2
(

1 − 𝑞𝐵
(

1 − 𝑝𝐴
(

𝑆𝐴′
)

𝑝1
))

. (55)

Then we discuss the critical threshold of percolation under differ-
ent coupling strength (0–1), and find the interesting phenomenon of
dependent directed higher-order network (see Fig. 6).

When the coupling strength is set greater than the continuous phase
transition point 𝑞𝑐2, when there is a continuous phase transition, when
𝑧 tends to 1, 𝑅𝐴i is a monotone increasing function. 𝑅𝐴i is monotone in-
creasing function of 𝑧= 1, 𝑅𝐴 is the largest. With this revised generating
7

i

function, the percolation threshold can be written

𝑃 𝐼𝐼𝑐 = 1
lim𝑧→1 𝑅𝐴𝑖 (𝑧𝑐 , 𝑞)

= 1
𝐺𝐴′
1 (1, 1)(1 − 𝑞)

. (56)

The result of both percolation thresholds is the inverse of the
corresponding 𝑝𝐼𝐼𝑐 . When the degree and hyperedge cardinality of
interdependent directed higher-order networks conform to a Poisson
distribution, we can denote the average degree as

⟨𝑘𝑎𝑣𝑒𝑟⟩ = ⟨𝑘⟩⟨𝑚⟩. (57)

For such interdependent directed higher-order networks conforming
to k and m, the percolation threshold can be reduced to 𝑝𝐼𝐼𝑐 =
2∕(⟨𝑘𝑎𝑣𝑒𝑟⟩(1 − 𝑞)). When the coupling strength is set less than the
discontinuous phase change point 𝑞𝑐1,

𝑃 𝐼𝑐 = 1
𝑅𝐴𝑖 (𝑧𝑐 , 𝑞)

, (58)

where 𝑅𝐴𝑖 (𝑧𝑐 , 𝑞) as a function of 𝑧 has a peak at 𝑧𝑐 which is the smaller
root of 𝐹𝐴𝑖 (𝑧𝑐 , 𝑞) = 0, and 𝐹𝐴𝑖 (𝑧, 𝑞) is the first derivative of 𝑅𝐴𝑖 (𝑧𝑐 , 𝑞).

The solutions of the critical coupling strengths 𝑞𝑐2 and 𝑞𝑐1 by
numerical simulations have been proposed by Zhou et al. [50].

5. Application to real networks

To confirm the accuracy of the results obtained from the man-
ual dataset, we construct real interdependent directed higher-order
networks in different scenarios. Directed networks are widely used
in higher-order real networks, including biological networks and so-
cial networks. Here are two real network datasets applied in our
experiment:

Neuronal networks (C-elegans) [51]: This dataset calculates the
topological properties of neuronal networks, such as degree distri-
butions, synaptic multiplicity, and small-world properties. Nodes are
different neurons. Using linear systems theory, the authors investi-
gated how brain activity spreads in response to sensory or artificial
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Fig. 6. Percolation thresholds of interdependent directed higher-order networks and phase diagrams. Using the function 𝑅 analysis calculation to analyze the percolation behavior,
we set 𝑘 = 8, 𝑚 = 4. Panel (a): We set the connection probability 𝑞 between network 𝐴 and network 𝐵 to 0.8, we can see the discontinuous phase transition, function 𝑅 has a
maximum value, At this time, the corresponding threshold 𝑃 𝐼

𝑐 = 0.877. Panel (b): When the connection probability 𝑞 between network 𝐴 and network 𝐵 is 0.65, it can be found
that the function has a maximum value and a local maximum value, which are 𝑃 𝐼

𝑐 = 0.735 and 𝑃 𝐼𝐼
𝑐 = 0.709 respectively. Panel (c): When the connection probability 𝑞 between

network 𝐴 and network 𝐵 is 0.3, it can be found that the function increases monotonically, in which case 𝑧 = 1 has a maximum 𝑃 𝐼𝐼
𝑐 = 0.3125. Panel (e)–(f): In the case of

different 𝑘 values, whether the interdependent directed higher-order network will undergo discontinuous phase transition or continuous phase transition. Panel (g)–(i): The squares,
triangles and pentagons in Panel (e) correspond to Panel (g)–(i), showing discontinuous phase transition, hybrid phase transition and continuous phase transition in the process of
percolation phase transition respectively.

Fig. 7. Percolation on the real-world data sets: biological neural networks and the social networks. Panel (a) are factor graphs transformed from real networks, representing
friendship networks and neuron networks, respectively. Blue lines in the figure represent edges in factor graphs, while triangles, squares and pentagons represent hyperedges or
factor nodes in factor graphs. Panel (b) in the figure is the percolation results and corresponding theoretical solutions. The corresponding theoretical parameters are shown in
Table 1, and the ordinate coordinates correspond to the GIN, GOUT and GSCC sizes of the network, respectively.
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Table 1
The actual parameters in the real network, including the number of nodes 𝑁 , the number of edges 𝐸, the average size of hyperdegree ⟨𝑘⟩ and hyperedge cardinality ⟨𝑚⟩, the
maximum in- and out-hyperdegree 𝒌max

𝑖𝑛 𝒌max
𝑜𝑢𝑡 and the maximum hyperedge cardinality 𝑚max, {𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5} represents hyperedges of different sizes of the initial network.

Dataset 𝑁 𝐸 ⟨𝑘⟩ ⟨𝑚⟩ 𝒌max
𝑖𝑛 𝒌max

𝑜𝑢𝑡 𝑚max 𝐸1 𝐸2 𝐸3 𝐸4 𝐸5

C-elegans 279 2194 3.87 15.43 48 53 97 2010 48 44 75 73
SFHH-Conference 2446 70 261 12.26 14.81 2120 2217 2446 60 378 7503 1776 429 175
i
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p
f
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stimuli and discovered a number of patterns of activity that might
work as the behavioral substrates mentioned previously. Analyzed is
the relationship between the chemical synaptic network and the gap
junction.

Social networks (SFHH-Conference) [52]: This data set describes
he face-to-face interactions of 405 participants to the 2009 SFHH
onference in Nice, France (June 4–5, 2009). It was first described
n the publications Dynamics of Person-to-Person Interactions from
istributed RFID Sensor Networks and Simulation of an SEIR Infec-

ious Disease Model on the Dynamic Contact Network of Conference
ttendees.

To enhance the efficiency of the experiment, Table 1’s listing of
even parameters for the artificial network experiment.

In each real-world dataset, we build a real network by the method
f the previous work Ref. 38. By measuring the number of nodes
n the real network, hyperdegree 𝑘 and hyperedge cardinality 𝑚, we
irst construct the artificial higher-order network. Then we connect the
eal directed higher-order networks through the completely dependent
dge, to generate the dependent directed higher-order network we
eed. The results represent cascade failures caused by structural failures
nd do not represent failures caused by real dynamics, such as those
aused by overloads in PG network systems [53].

With the decrease of the probability of retaining nodes in the factor
raph, we find that the size of the GSCC in the real directed higher-
rder network gradually decreases, and a phase transition occurs at the
ercolation threshold point. As can be seen from Fig. 7, the percolation
ituation of our model on the real network is consistent with the the-
retical solution. Similar phenomena are found in real-world networks
s in model networks.

. Conclusion and future work

The main contribution of this paper is for the interdependent di-
ected higher-order networks research provides a theoretical frame-
ork. We constructed the fully dependence and partially dependence
irected higher-order networks. We revealed the size variation of GIN,
OUT, and GSCC during percolation process, and the size of the per-
olation threshold. In addition, the network’s percolation threshold has
een calculated using the generating function and theoretical formulas,
nd the calculated results correspond to the Monte-Carlo simulation
esults.

In the experiment, we firstly constructed the fully dependence and
artially dependence directed higher-order networks, and we calcu-
ated the percolation process of the GIN, the GOUT, and the GSCC
n the interdependent directed higher-order networks by changing the
etwork’s hyperdegree 𝑘 and hyperedge cardinality 𝑚. We found that
dding higher-order edges makes the network more vulnerable. Increas-
ng the hyperdegree distribution of heterogeneity or the hyperedge
ardinality distribution of heterogeneity in interdependent directed
igher-order networks will also make the network more vulnerable.
nterestingly, the phase transition type changes from continuous to
iscontinuous with the increase of coupling strength, and partially
nterdependent directed higher-order networks show hybrid phase tran-
ition. Moreover, we applied the model to real-world social networks
nd biological neural networks for cascading failure and percolation
imulation, and found that the theoretical and simulation results are
onsistent, and the experimental results are verified.

The results show that the model can effectively study the robustness
9

f directed higher-order networks with different interlayer coupling
ntensities. For example, in bilayer interdependent biological neurons,
ur experimental results can verify that the amount of positive current
rom the synapse on one neuron 𝐴 to the synapse on the other neuron 𝐵
ffects the function of the other neuron 𝐵. Our model captures the im-
ortant impact of multi-node interactions on higher-order networks. In
uture work, our model can be applied to the robustness of higher-order
etworks with more layers or other disturbances.
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